Volume 68 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LI Jianqiao, SHI Yushu, WANG Fang, LI Wei. Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition[J]. Metrology Science and Technology, 2024, 68(6): 49-54. doi: 10.12338/j.issn.2096-9015.2024.0123
Citation: LI Jianqiao, SHI Yushu, WANG Fang, LI Wei. Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition[J]. Metrology Science and Technology, 2024, 68(6): 49-54. doi: 10.12338/j.issn.2096-9015.2024.0123

Metrological Space of Atomic-Scale Scanning Probe Microscopy under the SI Unit Redefinition

doi: 10.12338/j.issn.2096-9015.2024.0123
  • Received Date: 2024-04-10
  • Accepted Date: 2024-04-16
  • Rev Recd Date: 2024-04-18
  • Available Online: 2024-05-30
  • Publish Date: 2024-06-30
  • The 26th General Conference on Weights and Measures (CGPM) in 2018 recommended the silicon {220} lattice spacing as one of the realization methods for the definition of the metre, to meet the demand for atomic-level accuracy measurements as physical dimensions continue to shrink. Currently, the main instruments that can directly characterize the silicon lattice include X-ray diffractometers (XRD), transmission electron microscopes (TEM), and scanning probe microscopes (SPM). This paper briefly introduces the domestic and international application and development status of silicon lattice constant traceability methods under different measurement principles. Focusing on scanning probe microscopy, according to the measurement principles of different types of scanning probe microscopes, the spatial metrological calibration and application prospects of scanning tunneling microscopes (STM), atomic force microscopes (AFM), and qPlus atomic force microscopes (qPlus-AFM) at the atomic scale in both lateral and vertical dimensions are summarized. As an important part of the SI unit redefinition, conducting metrological research on scanning probe microscopy techniques based on the silicon lattice constant will help establish a new generation of nanometrological systems in China and enhance China's international status and voice in the field of nanometrology.
  • loading
  • [1]
    BIPM, CCL. Report of 17th meeting (14-15 June 2018) to the CIPM [EB/CD]. [2019-08-06]. www. bipm. org/utils/common/pdf/CC/CCL/CCL17. pdf.
    [2]
    TIESINGA E, MOHR P J, NEWELL D B, et al. CODATA recommended values of the fundamental physical constants: 2018[J]. Journal of physical and chemical reference data, 2021, 50: 033105. doi: 10.1063/5.0064853
    [3]
    BARTL G, ELSTER C, MARTIN J, et al. Thermal expansion and compressibility of single-crystal silicon between 285 K and 320 K[J]. Measurement Science and Technology, 2020, 31(6): 065013. doi: 10.1088/1361-6501/ab7359
    [4]
    BECKER P. History and progress in the accurate determination of the Avogadro constant[J]. Rep. Prog. Phys., 2001, 64: 1945-2008. doi: 10.1088/0034-4885/64/12/206
    [5]
    TANIGUCHI N. Current status in and future trends of ultraprecision machining and ultrafine materials processing[J]. CIRP Annals-Manufacturing Technology, 1983, 32: 573-582. doi: 10.1016/S0007-8506(07)60185-1
    [6]
    PISANI M, YACOOT A, BALLING P, et al. Comparison of the performance of the next generation of optical interferometers[J]. Metrologia, 2012, 49(4): 455. doi: 10.1088/0026-1394/49/4/455
    [7]
    LAWALL J R. Fabry-Perot metrology for displacements up to 50 mm[J]. JOSA A, 2005, 22(12): 2786-2798. doi: 10.1364/JOSAA.22.002786
    [8]
    CELIK M, HAMID R, KUETGENS U, et al. Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer[J]. Measurement Science and Technology, 2012, 23(8): 085901. doi: 10.1088/0957-0233/23/8/085901
    [9]
    YACOOT A, CROSS N. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry[J]. Measurement Science and Technology, 2002, 14(1): 148.
    [10]
    HANKE M, KESSLER E G. Precise lattice parameter comparison of highly perfect silicon crystals[J]. Journal of Physics D: Applied Physics, 2005, 38(10A): A117. doi: 10.1088/0022-3727/38/10A/022
    [11]
    BECKER P, DORENWENDT K, EBELING G, et al. Absolute measurement of the (220) lattice plane spacing in a silicon crystal[J]. Physical Review Letters, 1981, 46(23): 1540-1543. doi: 10.1103/PhysRevLett.46.1540
    [12]
    WASEDA A, FUJIMOTO H, ZHANG X W, et al. Homogeneity characterization of lattice spacing of silicon single crystals[J]. 29th Conference on Precision Electromagnetic Measurements (CPEM 2014), 2014: 400-401.
    [13]
    DAI G, MARKUS H, AND CHRISTIAN K, et al. Reference nano-dimensional metrology by scanning transmission electron microscopy[J]. Measurement Science and Technology, 2013(24): 085001.
    [14]
    DAI G, KAI H, HARALD B, et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST[J]. Measurement Science and Technology, 2017(28): 065010.
    [15]
    TSAI V, VORBURGER T, DIXSON R, et al. The Study of Silicon Stepped Surfaces as Atomic Force Microscope Calib Standards with a Calibrated AFM at NIST[J]. AIP Conf. Proc. , 1998, 449(1): 839-842.
    [16]
    DIXSON R, GUTHRIE W, ALLEN R, et al. Process Optimization for Lattice-Selective Wet Etching of Crystalline Silicon Structures[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2016, 15(1): 014503-014503. doi: 10.1117/1.JMM.15.1.014503
    [17]
    BIPM 2020 Recommendations of CCL/WG-N on: Realization of SI metre using height of monoatomic steps of crystalline silicon surfaces[EB/CD]. [2022-10-31].https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-3.pdf.
    [18]
    GARNAES J, NEČAS D, NIELSEN L, et al. Algorithms for using silicon steps for scanning probe microscope evaluation[J]. Metrologia, 2020, 57(6): 064002.
    [19]
    李伟, 施玉书, 李琪, 等. 单晶硅晶格间距的测量技术进展及应用[J]. 人工晶体学报, 2021, 50(1): 151-157,178.
    [20]
    WANG F, SHI Y S, ZHANG S, et al. Automatic measurement of silicon lattice spacings in high-resolution transmission electron microscopy images through 2D discrete Fourier transform and inverse discrete Fourier transform[J]. Nanomanufacturing and Metrology, 2022, 5(2): 119-126. doi: 10.1007/s41871-022-00129-7
    [21]
    WANG F, SHI Y S, LI W, et al. Characterization of a nano line width reference material based on metrological scanning electron microscope[J]. Chinese Physics B, 2022, 31(5): 050601. doi: 10.1088/1674-1056/ac3225
    [22]
    SULLAN R M, CHURNSIDE A B, NGUYEN D M, et al. Atomic force microscopy with sub-picoNewton force stability for biological applications[J]. Methods, 2013, 60(2): 131-141. doi: 10.1016/j.ymeth.2013.03.029
    [23]
    BULL M S, SULLAN R M A, LI H B, et al. Improved Single Molecule Force Spectroscopy Using Micromachined Cantilevers[J]. ACS Nano, 2014, 8(5): 4984-4995. doi: 10.1021/nn5010588
    [24]
    MELCHER J, STIRLING J, CERVANTES F G, et al. A self-calibrating optomechanical force sensor with femtonewton resolution[J]. Applied Physics Letters, 2014, 105(23): 233109. doi: 10.1063/1.4903801
    [25]
    GUO J, JIANG, Y. Submolecular insights into interfacial water by hydrogen-sensitive scanning probe microscopy[J]. Accounts of Chemical Research, 2022, 55(12): 1680-1692. doi: 10.1021/acs.accounts.2c00111
    [26]
    CHENG B, WU D, BIAN K, et al. A qPlus-based scanning probe microscope compatible with optical measurements[J]. Review of Scientific Instruments, 2022, 93(4): 043701. doi: 10.1063/5.0082369
    [27]
    PENG J, GUO J, HAPALA P, et al. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy[J]. Nature Communications, 2018, 9(1): 122. doi: 10.1038/s41467-017-02635-5
    [28]
    MA R, HUAN Q, WU L, et al. Upgrade of a commercial four-probe scanning tunneling microscopy system[J]. Review of Scientific Instruments, 2017, 88(6): 063704. doi: 10.1063/1.4986466
    [29]
    YAN J H, MA A W, Wang W, et al. A time-shared switching scheme designed for multi-probe scanning tunneling microscope[J]. Review of Scientific Instruments, 2021, 92: 103702.
    [30]
    HE G, WEI Z, FENG Z, et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy[J]. Review of Scientific Instruments, 2020, 91(1): 013904. doi: 10.1063/1.5119686
    [31]
    MA R S, LI H, SHI C S, et al. Development of a cryogen-free sub-3 K low-temperature scanning probe microscope by remote liquefaction scheme[J]. Review of Scientific Instruments, 2023, 94: 093701. doi: 10.1063/5.0165089
    [32]
    LIN T Y, PENG G S. Nanometrology of surface topography: Application to the research in development of a new mass standard[J]. International Journal of Machine Tools and Manufacture, 1998, 38(5-6): 707-713. doi: 10.1016/S0890-6955(97)00121-1
    [33]
    JALILI N, LAXMINARAYANA K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences[J]. Mechatronics, 2004, 14(8): 907-945. doi: 10.1016/j.mechatronics.2004.04.005
    [34]
    PENG J B, JIANG Y. qPlus sensor based atomic force microscope[J]. PHYSICS, 2023, 52(3): 186-195.
    [35]
    K Bian, W Zheng, X Chen, et al. A scanning probe microscope compatible with quantum sensing at ambient conditions[J]. Review of Scientific Instruments, 2024, 95(5): 053707. doi: 10.1063/5.0202756
    [36]
    CHAIKOOL P, AKETAGAWA M, OKUYAMA E. A two-dimensional atom encoder using one lateral-dithered scanning tunneling microscope (STM) tip and a regular crystalline lattice[J]. Measurement Science and Technology, 2009, 20(8): 084006. doi: 10.1088/0957-0233/20/8/084006
    [37]
    DIXSON R, ORJI N, MISUMi I, et al. Spatial dimensions in atomic force microscopy: instruments, effects, and measurements[J]. Ultramicroscopy, 2018, 194: 199-214.
    [38]
    徐毅, 高思田, 李晶. 纳米、亚微米标准样板及SPM量值溯源[J]. 计量学报, 2003, 24(2): 81-84. doi: 10.3321/j.issn:1000-1158.2003.02.001
    [39]
    石俊凯, 陈晓梅, 万宇, 等. 基于栅格节距中心峰值检测的扫描探针显微镜校准方法[J]. 计测技术, 2024, 44(1): 73-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (98) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return