Volume 68 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
SONG Liyuan, MI Qian. Design of a Three-Axis Fiber Optic Gyro Combined Optical Path Detection System[J]. Metrology Science and Technology, 2024, 68(7): 41-48. doi: 10.12338/j.issn.2096-9015.2024.0138
Citation: SONG Liyuan, MI Qian. Design of a Three-Axis Fiber Optic Gyro Combined Optical Path Detection System[J]. Metrology Science and Technology, 2024, 68(7): 41-48. doi: 10.12338/j.issn.2096-9015.2024.0138

Design of a Three-Axis Fiber Optic Gyro Combined Optical Path Detection System

doi: 10.12338/j.issn.2096-9015.2024.0138
  • Received Date: 2024-04-21
  • Accepted Date: 2024-05-17
  • Rev Recd Date: 2024-05-22
  • Available Online: 2024-06-14
  • Publish Date: 2024-07-30
  • This paper presents the design of a three-axis fiber optic gyro combined optical path detection system based on a Super Luminescent Diode (SLD) light source. The system employs synchronized temperature control and constant current drive circuits to ensure normal operation of the SLD across the full temperature range. The power supply section incorporates surge protection to effectively prevent transient impacts caused by switching power supplies or environmental changes, thus protecting the components. The detection system monitors the photodetector's output bias voltage under both light and no-light conditions, while simultaneously calculating the assembled optical path system loss through numerical analysis. This approach determines whether the fiber optic gyro's optical path technical specifications meet the design requirements. Finally, experimental validation demonstrates the effectiveness of the three-axis fiber optic gyro combined optical path detection system in batch production processes. The system improved the accuracy stability of fiber optic gyros to 87% and increased the finished product qualification rate to 96%.
  • loading
  • [1]
    薛连莉, 沈玉芃, 徐月. 2019年国外惯性技术发展与回顾[J]. 导航定位与授时, 2020, 7(1): 60-66.
    [2]
    陈倩倩, 魏建雄. 惯性导航计量技术发展现状与展望[J]. 计量与测试技术, 2024, 51(2): 45-47
    [3]
    陈刚, 饶鑫, 朱永涛等. 海上平台惯性导航技术发展现状与趋势[J]. 哈尔滨工程大学学报, 2023, 44(11): 1902-1913. doi: 10.11990/jheu.202306027
    [4]
    Lefèvre H C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology[J].Optical Fiber Technology, 2013, 19(6): 828-832.
    [5]
    Vali V, Shorthill R W. Fiber ring interferometer[J]. Applied Optics, 1976 , 15(5): 1099-1100.
    [6]
    蓝士祺, 李俊, 吴凡, 等. 宽谱光源谐振式光纤陀螺谐振特性分析[J]. 中国惯性技术学报, 2024, 32(3): 300-307.
    [7]
    邹康, 曲天良, 郑畅, 等. 谐振式光纤陀螺系统建模及其应用研究[J]. 导航定位与授时, 2024, 11(2): 35-45.
    [8]
    Sanders S J, Strandjord L K, Mead D.Fiber optic gyro technology trends - a Honeywell perspective[C]//2002 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533).IEEE, 2002.
    [9]
    杜彬, 王俊昌, 魏鹤怡, 等. 一种基于三轴光纤陀螺的小型惯性测量系统设计[J]. 自动化与仪器仪表, 2022(2): 1-5.
    [10]
    于怀勇, 高川, 汪世林, 等. 光学陀螺发展方向及动态研究[C]//中国惯性技术学会. 惯性技术发展动态发展方向研讨会论文集——前沿技术与惯性技术的融合与应用. 北京自动化控制设备研究所, 2021: 11.
    [11]
    黄奕程. 光纤陀螺捷联惯导关键技术研究[D]. 杭州: 浙江大学, 2020.
    [12]
    余钢. 三轴一体闭环光纤陀螺工程化研究[J]. 中国科技信息, 2021(22): 72-73.
    [13]
    Sanders G A , Sanders S J , Strandjord L K, et al. Fiber optic gyro development at Honeywell[C]//Conference on Fiber Optic Sensors and Applications XIII.2016.
    [14]
    徐朗, 蔡德所. 基于最小二乘平滑滤波与CEEMDAN的光纤陀螺信号处理研究[J]. 振动与冲击, 2020, 39(10): 269-278.
    [15]
    邱嘉荦, 王磊, 黄腾超, 等. 干涉式光纤陀螺技术发展综述[J]. 光学学报, 2022, 42(17): 136-145.
    [16]
    李绪友, 张勇, 张琛, 等. 三轴光纤陀螺光路系统的设计与研究[J]. 压电与声光, 2010, 4(32): 219-222. doi: 10.3969/j.issn.1004-2474.2010.02.016
    [17]
    韩军良. 光纤陀螺的误差分析、建模及滤波研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
    [18]
    唐尊伟. 光纤陀螺偏振误差及关键器件的研究[D]. 北京:北京交通大学, 2010.
    [19]
    张稀, 王妍, 张春熹, 等. 光纤陀螺光源驱动技术[J]. 北京航空航天大学学报, 2002, 28(3): 298-230. doi: 10.3969/j.issn.1001-5965.2002.03.014
    [20]
    何伟杰. 光纤陀螺中光纤熔接偏振特性的实验分析[D]. 西安:西安电子科技大学, 2010.
    [21]
    Lee K. Strandjore, Glen. A. Sanders. “ Relative Intensity Noise Controller for Fiber Light Sources”. United States Patent, 2003, Patent Number: 0, 128, 365 A1.
    [22]
    候军辉, 王巍, 杨清生, 等. 光纤陀螺SLD光源的驱动控制研究[J]. 中国惯性技术学报, 2002, 10(3): 50-54. doi: 10.3969/j.issn.1005-6734.2002.03.010
    [23]
    刘元元, 冯文帅, 李青, 等. 建立不等式约束条件提高三轴一体光纤陀螺装配合格率[J]. 导航与控制, 2021, 20(3): 86-92. doi: 10.3969/j.issn.1674-5558.2021.03.011
    [24]
    Jekeli C. Precision Free-Inertial Navigation with Gravity Compensation by an Onboard Gradiometer[J].Journal of Guidance Control and Dynamics, 2006, 29(3):704-713.
    [25]
    王淑香, 马东营, 赵幼琨, 等. 基于时分复用技术的三轴光纤陀螺光路噪声及抑制技术研究[J]. 光学与光电技术, 2012, 10(4): 28-31.
    [26]
    王振国. 光纤陀螺调制与闭环控制技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
    [27]
    孙旭强. 谐振式光纤陀螺光路优化研究[D]. 深圳:深圳大学, 2018.
    [28]
    陈世同. 高精度光纤陀螺建模及信号处理技术研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
    [29]
    何涛. 光纤陀螺光路器件匹配及测试技术研究[D]. 西安:西安电子科技大学, 2009.
    [30]
    殷建玲, 刘军, 余伟涛. 光纤陀螺光源温控特性研究[J]. 半导体光电, 2010, 31(5): 817-820. doi: 10.16818/j.issn1001-5868.2010.05.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (75) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return