Volume 68 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHAO Danhua, CHEN Jiarui, BAO Luwei, ZHU Jiahui. A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures[J]. Metrology Science and Technology, 2024, 68(8): 18-24, 70. doi: 10.12338/j.issn.2096-9015.2024.0148
Citation: ZHAO Danhua, CHEN Jiarui, BAO Luwei, ZHU Jiahui. A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures[J]. Metrology Science and Technology, 2024, 68(8): 18-24, 70. doi: 10.12338/j.issn.2096-9015.2024.0148

A Review of Electric Field Measurement and Microwave Sensing Based on Rydberg Atomic Apertures

doi: 10.12338/j.issn.2096-9015.2024.0148
  • Received Date: 2024-05-06
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2024-05-18
  • Available Online: 2024-06-25
  • Publish Date: 2024-08-30
  • In recent years, the application of Rydberg atoms in microwave measurement has emerged as a research hotspot in quantum metrology. Compared to traditional microwave sensing technology, Rydberg atomic systems demonstrate higher sensitivity, stronger anti-interference capabilities, and unique quantum traceability. These advantages give Rydberg atoms great potential in microwave measurements. Despite these advantages, the complex energy level structure of Rydberg atomic systems and their diverse interactions with electromagnetic waves pose challenges for engineering applications. Currently, the application of “atomic aperture” sensing technology based on Rydberg atoms in traditional microwave sensing is still in its initial stages, with significant room for improvement. To fully leverage the advantages of Rydberg atoms in microwave measurement and address their limitations in practical applications, we discuss the prospects of Rydberg atomic systems in current electromagnetic wave transceiver technologies, building on previous research findings. With ongoing technological advancements, Rydberg atoms are expected to achieve precise measurements across a wider range of frequency bands, providing robust support for wireless communication, radar detection, and other related fields.
  • loading
  • [1]
    项国勇, 郭光灿. Quantum metrology[J]. 中国物理B(英文版), 2013, 1: 91-100.
    [2]
    胡一鸣. LIGO发现引力波: 一个新时代的起点[J]. 自然杂志, 2016, 38(2): 5-12.
    [3]
    何玉钧, 李永倩, 杨志. 全光纤Mach - Zehnder干涉仪及其在光纤自发布里渊散射测量中的应用[J]. 光子学报, 2002, 31(7): 83-87.
    [4]
    DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 1.
    [5]
    ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B, Atomic Molecular and Optical Physics, 2019, 53(1): 012002.
    [6]
    ANDERSON D A, GONCALVES L F, LEGAIE R, et al. Towards Rydberg atom synthetic apertures: Wide-area high-resolution RF amplitude and phase imaging with Rydberg probes[C]. 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), 2023.
    [7]
    MEYER D H, CASTILLO Z A, COX K C, et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53(3): 034001. doi: 10.1088/1361-6455/ab6051
    [8]
    ZHAO J, ZHU X, ZHANG L, et al. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency[J]. Optics Express, 2009, 17(18): 15821-15826. doi: 10.1364/OE.17.015821
    [9]
    HARRIS S E. Electromagnetically induced transparency[J]. Physics today, 1997, 50(7): 36-42. doi: 10.1063/1.881806
    [10]
    DELONE N B, KRAINOV V P. AC Stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42(7): 669. doi: 10.1070/PU1999v042n07ABEH000557
    [11]
    JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. doi: 10.1038/s41567-020-0918-5
    [12]
    GALLAGHER T F. Rydberg atoms[J]. Reports on Progress in Physics, 1988, 51(2): 143. doi: 10.1088/0034-4885/51/2/001
    [13]
    MOHAPATRA A K, JACKSON T R, ADAMS C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical review letters, 2007, 98(11): 113003. doi: 10.1103/PhysRevLett.98.113003
    [14]
    WEATHERILL K J, PRITCHARD J D, ABEL R P, et al. Electromagnetically induced transparency of an interacting cold Rydberg ensemble[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(20): 201002. doi: 10.1088/0953-4075/41/20/201002
    [15]
    HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6169-6182. doi: 10.1109/TAP.2014.2360208
    [16]
    ANDERSON D A, MILLER S A, RAITHEL G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 2016, 5(3): 034003. doi: 10.1103/PhysRevApplied.5.034003
    [17]
    HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 717-728. doi: 10.1109/TEMC.2016.2644616
    [18]
    THAICHAROEN N, MOORE K R, ANDERSON D A, et al. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 2019, 100(6): 063427. doi: 10.1103/PhysRevA.100.063427
    [19]
    SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics, 2012, 8(11): 819-824. doi: 10.1038/nphys2423
    [20]
    SHENG J, CHAO Y, KUMAR S, et al. Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity[J]. Physical Review A, 2017, 96(3): 033813. doi: 10.1103/PhysRevA.96.033813
    [21]
    PRAJAPATI N, ROBINSON A K, BERWEGER S, et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 2021, 119(21): 1-6.
    [22]
    SIMONS M T, ARTUSIO-GLIMPSE A B, HOLLOWAY C L, et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 2021, 104(3): 032824. doi: 10.1103/PhysRevA.104.032824
    [23]
    DING D S, LIU Z K, SHI B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452. doi: 10.1038/s41567-022-01777-8
    [24]
    陈竹年. 量子计量学的形成和发展[J]. 自然杂志, 1997, 20(2): 71-73.
    [25]
    GRAWFORD M L. Generation of Standard EM Fields Using TEM Transmission Cells[J]. Electromagnetic Compatibility IEEE Transactions on, 1974, EMC-16(4): 189-195. doi: 10.1109/TEMC.1974.303364
    [26]
    刘潇, 赵兴, 洪力, 等. 微波暗室静区性能评测及不确定度分析[J]. 计量科学与技术, 2022, 66(4): 89-94.
    [27]
    石照民, 张江涛, 潘仙林, 等. 超低频电压量值溯源关键技术研究[J]. 计量科学与技术, 2021, 65(5): 30-35. doi: 10.12338/j.issn.2096-9015.2020.9011
    [28]
    李耿, 陈璀, 安宁, 等. 电磁环境测试系统灵敏度计算及影响因素分析[J]. 计量与测试技术, 2022, 49(8): 40-44.
    [29]
    国家市场监督管理总局. 电场探头校准规范: JJF1886-2020 [S]. 北京: 中国标准出版社, 2020.
    [30]
    国家国防科技工业局. 电磁场传感器和探头: JJG(军工) 24-2018 [S]. 北京: 中国标准出版社, 2018.
    [31]
    HOLLOWAY C L, SIMONS M T, KAUTZ M D, et al. A quantum-based power standard: using Rydberg atoms for a SI-traceable radio-frequency power measurement technique in rectangular waveguides[J]. Applied Physiscs Letters, 2018, 113(9): 1.
    [32]
    李琪, 施玉书, 李伟, 等. 微纳米光学测量的严格耦合波分析方法[J]. 计量科学与技术, 2020(12): 3-6,11. doi: 10.3969/j.issn.2096-9015.2020.12.01
    [33]
    SHAFFER J P, KÜBLER H. A read-out enhancement for microwave electric field sensing with Rydberg atoms[C]. Quantum Technologies 2018, 2018.
    [34]
    VOGT T, VITEAU M, CHOTIA A, et al. Electric-field induced dipole blockade with Rydberg atoms[J]. Physical Review Letters, 2007, 99(7): 073002. doi: 10.1103/PhysRevLett.99.073002
    [35]
    BOHLOULI-ZANJANI P, PETRUS J A, MARTIN J D D. Enhancement of Rydberg atom interactions using ac Stark shifts[J]. Physical review letters, 2007, 98(20): 203005. doi: 10.1103/PhysRevLett.98.203005
    [36]
    MEYER D H, KUNZ P D, SOLMEYER N. Nonlinear polarization spectroscopy of a Rydberg state for laser stabilization[J]. Applied Optics, 2017, 56(3): B92-B96. doi: 10.1364/AO.56.000B92
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (324) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return