Turn off MathJax
Article Contents
LIU Zhe, HONG Tao, ZHANG Yu, LI Qingwu, ZHANG Zhengdong. Research on Characterization Methods and Uncertainty Evaluation for Freezing Point Reference Materials[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0168
Citation: LIU Zhe, HONG Tao, ZHANG Yu, LI Qingwu, ZHANG Zhengdong. Research on Characterization Methods and Uncertainty Evaluation for Freezing Point Reference Materials[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0168

Research on Characterization Methods and Uncertainty Evaluation for Freezing Point Reference Materials

doi: 10.12338/j.issn.2096-9015.2024.0168
  • Received Date: 2024-05-23
  • Accepted Date: 2024-06-14
  • Rev Recd Date: 2024-06-18
  • Available Online: 2024-08-09
  • Jet fuel, commonly known as aviation kerosene in China, is primarily represented by No. 3 jet fuel. The freezing point is a crucial indicator of jet fuel's low-temperature fluidity. During flight, as jet fuel temperature decreases, solid hydrocarbon crystallization can occur, potentially blocking filters and compromising flight safety. According to GB 6537-2018, the freezing point of No. 3 jet fuel must not exceed −47°C. Two methods are specified for determining the freezing point: GB/T 2430-2008 "Standard Test Method for Freezing Point of Aviation Fuels" and SH/T 0770-2005 "Standard Test Method for Freezing Point of Aviation Fuels (Automatic Phase Transition Method)," with GB/T 2430-2008 designated as the arbitration method. This study investigates the effects of various factors, including sample volume, cooling bath temperature, and stirring rate, on freezing point measurement results. It also examines the consistency between the two methods and evaluates the uncertainties introduced by the characterization method. Results indicate that a 0.01 mL change in sample volume leads to a 0.07°C variation in test results. Stirring rates between 1 and 1.5 revolutions per second cause a 0.2°C change in measurements. Cooling bath temperatures ranging from −60°C to −80°C have minimal impact on freezing point results. Experimental validation shows a maximum deviation of 0.7°C between the two methods, surpassing the reproducibility requirements of the standard method. The uncertainty components introduced by sample volume, stirring rate, method selection, and data rounding are 0.040°C, 0.058°C, 0.20°C, and 0.14°C, respectively. The expanded uncertainty of the characterization method is 0.50°C (k=2).
  • loading
  • [1]
    曾强鑫. 油品计量基础[M]. 北京: 中国石化出版社, 2003: 12-19.
    [2]
    林世雄. 石油炼制工程[M]. 北京: 石油工业出版社, 1988: 20-25.
    [3]
    张浩. 油品低温性质及非牛顿流体黏度计量技术研究[D]. 北京: 北京化工大学, 2015.
    [4]
    孟凡坤, 熊刚, 宋世远. 石油产品低温性能指标检测方法的现状及发展[J]. 化学工程师, 2018, 32(4): 50-56.
    [5]
    国家市场监督管理总局. 3号喷气燃料: GB 6537-2018[S]. 北京: 中国标准出版社, 2018.
    [6]
    王佩弦, 李遵照, 丁凯, 等. 航空煤油的关键指标分析与影响因素探讨[J]. 中外能源, 2021, 26(7): 68-73.
    [7]
    黎臣麟, 武宝平, 文泽东, 等. 喷气燃料冰点试验出现悬浮物的探讨[J]. 石油炼制与化工, 2019, 50(8): 103-108. doi: 10.3969/j.issn.1005-2399.2019.08.020
    [8]
    王娟丽, 左芸, 任强. 航空煤油冰点分析系统的设计[J]. 科技风, 2012(12): 42. doi: 10.3969/j.issn.1671-7341.2012.12.029
    [9]
    陈雪娇, 侯磊, 李师瑶. 航空煤油冰点及黏温关系的分子动力学模拟[J]. 石油科学通报, 2016, 1(3): 493-502. doi: 10.3969/j.issn.2096-1693.2016.03.046
    [10]
    慕星华. 航煤冰点不合格原因分析与应对措施[J]. 石油化工技术与经济, 2023, 39(6): 32-35. doi: 10.3969/j.issn.1674-1099.2023.06.012
    [11]
    Lysaght M J, Kelly J J, Callis J B. Rapid spectroscopic determination of percent aromatics, percent saturates and freezing point of JP-4 aviation fuel[J]. Fuel, 1993, 72(5): 623-631. doi: 10.1016/0016-2361(93)90574-L
    [12]
    Striebich R C, Motsinger M A, Rauch M E, et al. Estimation of select specification tests for aviation turbine fuels using fast gas chromatography(GC)[J]. Energy & Fuel, 2005, 19(6): 2445-2454.
    [13]
    Widmor N, Ervin J S, Zabarnick S, et al. Studies of jet fuel freezing by differential scanning calorimetry and cold-stage microscopy[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(1): 34-39. doi: 10.1115/1.1492836
    [14]
    石培华. 利用近红外光谱技术快速测定航空煤油物理性质[J]. 石化技术, 2021, 28(1): 1-3. doi: 10.3969/j.issn.1006-0235.2021.01.001
    [15]
    时圣洁, 李虎, 王小伟, 等. 气相色谱法在喷气燃料冰点预测中的应用[J]. 石油炼制与工, 2021, 52(9): 102-105.
    [16]
    吴明清, 赵丽萍, 常春艳, 等. 喷气燃料冰点的测定方法[J]. 石油炼制与化工, 2012, 43(7): 98-103. doi: 10.3969/j.issn.1005-2399.2012.07.021
    [17]
    吴聿聪. 油品低温流动性测试关键技术研究与实现[D]. 杭州: 中国计量大学, 2019.
    [18]
    张戟. 《航空燃料冰点测定法》国家标准修订[J]. 石油商技, 2008, 26(5): 62-66. doi: 10.3969/j.issn.1006-1479.2008.05.012
    [19]
    田一兵. 正构十二烷含量对航煤冰点的影响[J]. 化工技术与开发, 2022, 51(10): 60-61. doi: 10.3969/j.issn.1671-9905.2022.10.017
    [20]
    何日梅, 范晓辉, 李广福, 等. 冰点测量的方法、应用现状和量值溯源途径[J]. 中国计量, 2023(9): 105-109,113.
    [21]
    宋小卫, 李贺然, 段卫宇, 等. 蒸发损失测定影响因素研究及不确定度评定[J]. 计量科学与技术, 2022, 66(7): 3-6.
    [22]
    全国石油产品和润滑剂标准化技术委员会. 航空燃料冰点测定法: GB/T 2430-2008[S]. 北京: 中国标准出版社, 2008.
    [23]
    全国石油和化工行业计量技术委员会. 航空燃料冰点测定法(自动相转换法): SH/T 0770-2005[S]. 北京: 中国标准出版社, 2005.
    [24]
    王硕, 段卫宇, 邱兆军. 石油产品倾点测定法的影响因素研究[J]. 中国石油和化工标准与质量, 2016, 36(5): 16-17. doi: 10.3969/j.issn.1673-4076.2016.05.007
    [25]
    张浩, 张正东, 张波, 等. 试验条件对油品倾点测试结果的影响[J]. 天然气与石油, 2014, 32(5): 33-36,9. doi: 10.3969/j.issn.1006-5539.2014.05.009
    [26]
    Chen B, Sun Y, Fang J, et al. Cold flow properties and crystal morphologies of biodiesel blends[J]. Chemistry & Technology of Fuels & Oils, 2010, 46(1): 52-57.
    [27]
    周建新. 影响航煤冰点准确性的原因探讨[J]. 聚酯工业, 2022, 35(3): 17-19. doi: 10.3969/j.issn.1008-8261.2022.03.005
    [28]
    叶德培. 测量不确定度理解评定与应用[M]. 北京: 中国质检出版社, 2013.
    [29]
    靳浩元, 刘军. 测量不确定度的评定方法及应用研究[J]. 计量科学与技术, 2021, 65(5): 124-131. doi: 10.12338/j.issn.2096-9015.2020.9002
    [30]
    王为农. 校准: 定义的解读和结果的测量不确定度表达[J]. 计量科学与技术, 2023, 67(2): 58-61. doi: 10.12338/j.issn.2096-9015.2022.0225
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (87) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return