Turn off MathJax
Article Contents
LEI Shaobo, TONG Chenhua, XIAO Bin, FAN Haoyan. Research on the Spatio-Temporal Distribution and Influencing Factors of Carbon Emissions in China's Power Industry[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0170
Citation: LEI Shaobo, TONG Chenhua, XIAO Bin, FAN Haoyan. Research on the Spatio-Temporal Distribution and Influencing Factors of Carbon Emissions in China's Power Industry[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0170

Research on the Spatio-Temporal Distribution and Influencing Factors of Carbon Emissions in China's Power Industry

doi: 10.12338/j.issn.2096-9015.2024.0170
  • Received Date: 2024-05-23
  • Accepted Date: 2024-07-30
  • Rev Recd Date: 2024-08-01
  • Available Online: 2024-08-27
  • In 2020, China proposed the goals of carbon peaking and carbon neutrality. As a key industry, the carbon emissions of the power sector play a crucial role in achieving these objectives. This study analyzes the characteristics and influencing factors of carbon emissions in China’s power industry by applying traditional statistical methods to the spatio-temporal data of carbon emissions and utilizing grey correlation analysis to assess the impact of different energy sources on carbon emissions in the sector. Temporally, carbon emissions in China's power industry have been rising annually, with fluctuating growth rates. Spatially, the Bohai Rim region consistently exhibits high carbon emissions, while regions like Inner Mongolia and Xinjiang show an upward trend, and the Jiangsu-Zhejiang-Shanghai region shows a downward trend. The grey correlation analysis results indicate that carbon emissions from raw coal, other petroleum products, coke oven gas, and other natural gas have a significant influence on the overall carbon emissions of the power industry.
  • loading
  • [1]
    李延峰. 电力传输网络及其碳排放效应分析与协同优化模型研究[D]. 北京: 华北电力大学(北京), 2022.
    [2]
    生态环境部. 关于做好2021、2022年度全国碳排放权交易配额分配相关工作的通知 [EB/OL]. (2023-03-15) [2023-11-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202303/t20230315_1019707.html.
    [3]
    Liu W, Zuo B, Qu C, et al. A reasonable distribution of natural landscape: Utilizing green space and water bodies to reduce residential building carbon emissions[J]. Energy and Buildings, 2022, 267: 112150. doi: 10.1016/j.enbuild.2022.112150
    [4]
    蒋忠, 张亮, 王海峰, 等. 企业核算碳排放量不确定度评估[J]. 计量学报, 2022, 43(3): 420-426. doi: 10.3969/j.issn.1000-1158.2022.03.19
    [5]
    王靖添, 马晓明. 中国交通运输碳排放影响因素研究——基于双层次计量模型分析[J]. 北京大学学报 (自然科学版), 2021, 57(6): 1133-1142.
    [6]
    Xiang X, Ma X, Ma Z, et al. Python-LMDI: A tool for index decomposition analysis of building carbon emissions[J]. Buildings, 2022, 12(1): 83. doi: 10.3390/buildings12010083
    [7]
    Zhang W, Li G, Guo F. Does carbon emissions trading promote green technology innovation in China?[J]. Applied Energy, 2022, 315: 119012. doi: 10.1016/j.apenergy.2022.119012
    [8]
    Li R, Li L, Wang Q. The impact of energy efficiency on carbon emissions: evidence from the transportation sector in Chinese 30 provinces[J]. Sustainable Cities and Society, 2022, 82: 103880. doi: 10.1016/j.scs.2022.103880
    [9]
    Bruckner B, Hubacek K, Shan Y, et al. Impacts of poverty alleviation on national and global carbon emissions[J]. Nature Sustainability, 2022, 5(4): 311-320. doi: 10.1038/s41893-021-00842-z
    [10]
    杨红雄, 杨光. 基于现代化的中国省级碳排放时空演变及影响因素研究[J]. 气候变化研究进展, 2023, 19(4): 457-471.
    [11]
    王瑛, 何艳芬. 中国省域二氧化碳排放的时空格局及影响因素[J]. 世界地理研究, 2020, 29(3): 512-522. doi: 10.3969/j.issn.1004-9479.2020.03.2018507
    [12]
    余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24.
    [13]
    Zhou C, Lin X, Wang R, et al. Real-time carbon emissions monitoring of high-energy-consumption enterprises in Guangxi based on electricity big data[J]. Energies, 2023, 16(13): 5124. doi: 10.3390/en16135124
    [14]
    王婧婷, 王宇扬, 周明, 等. 考虑绿电交易的用户间接碳排放核算方法[J/OL]. 电网技术. https://doi.org/10.13335/j.1000-3673.pst.2023.0964.
    [15]
    王春妍, 卢达, 李贺龙, 等. 电力碳排放计量网络溯源方法及计量分析[J/OL]. 电网技术. https://doi.org/10.13335/j.1000-3673.pst.2023.1572.
    [16]
    李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842.
    [17]
    Cai L, Duan J, Lu X, et al. Pathways for electric power industry to achieve carbon emissions peak and carbon neutrality based on LEAP model: A case study of state-owned power generation enterprise in China[J]. Computers & Industrial Engineering, 2022, 170: 108334.
    [18]
    Guan Y, Shan Y, Huang Q, et al. Assessment to China's recent emission pattern shifts[J]. Earth's Future, 2021, 9(11): e2021EF002241. doi: 10.1029/2021EF002241
    [19]
    Shan Y, Huang Q, Guan D, et al. China CO2 emission accounts 2016–2017[J]. Scientific data, 2020, 7(1): 54. doi: 10.1038/s41597-020-0393-y
    [20]
    Shan Y, Guan D, Zheng H, et al. China CO2 emission accounts 1997–2015[J]. Scientific data, 2018, 5(1): 1-14. doi: 10.1038/s41597-018-0002-5
    [21]
    Shan Y, Liu J, Liu Z, et al. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors[J]. Applied Energy, 2016, 184: 742-750. doi: 10.1016/j.apenergy.2016.03.073
    [22]
    环境保护部. 中华人民共和国环境保护法 [EB/OL]. (2014-04-25) [2023-11-28]. http://www.npc.gov.cn/npc/c1773/c2518/c27694/c27698/201905/t20190521_208293.html.
    [23]
    国家能源局. 三部委联合发布《能源行业加强大气污染防治工作方案》 [EB/OL]. (2014-05-16) [2023-11-28]. https://www.nea.gov.cn/2014-05/16/c_133339262.htm.
    [24]
    国家发展和改革委员会. 中华人民共和国国家发展和改革委员会令 [EB/OL]. (2012-10-14) [2023-11-28]. https://www.ndrc.gov.cn/xxgk/zcfb/fzggwl/201210/t20121031_960743.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (91) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return