Citation: | LV Qingbin, LIANG Junmei, ZHAO Haibo, ZHAO Xiaoning, LIU Ran, WANG Bingyue. Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0218 |
[1] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
|
[2] |
Wu J, Lin H, Moss D J, et al. Graphene oxide for photonics, electronics and optoelectronics[J]. Nature Reviews Chemistry, 2023, 7(3): 162-183. doi: 10.1038/s41570-022-00458-7
|
[3] |
Xia Y, Gao W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591
|
[4] |
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6: 183-191. doi: 10.1038/nmat1849
|
[5] |
Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. doi: 10.1039/C1CS15078B
|
[6] |
Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature nanotechnology, 2014, 9(10): 730-734. doi: 10.1038/nnano.2014.225
|
[7] |
Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2018, 5(1): 90-101. doi: 10.1093/nsr/nwx055
|
[8] |
Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry[J]. Nature materials, 2019, 18(6): 520-524. doi: 10.1038/s41563-019-0341-4
|
[9] |
Barkan T. Graphene: the hype versus commercial reality[J]. Nature nanotechnology, 2019, 14(10): 904-906. doi: 10.1038/s41565-019-0556-1
|
[10] |
Pollard A J. Metrology for graphene and 2D materials[J]. Measurement Science and Technology, 2016, 27(9): 092001. doi: 10.1088/0957-0233/27/9/092001
|
[11] |
Wyss K M, Luong D X, Tour J M. Large-scale syntheses of 2D materials: flash joule heating and other methods[J]. Advanced materials, 2022, 34(8): 2106970. doi: 10.1002/adma.202106970
|
[12] |
Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors[J]. Nature Electronics, 2022, 5(5): 281-288. doi: 10.1038/s41928-022-00755-5
|
[13] |
Das S, Pandey D, Thomas J, et al. The role of graphene and other 2D materials in solar photovoltaics[J]. Advanced Materials, 2019, 31(1): 1802722. doi: 10.1002/adma.201802722
|
[14] |
Carey T, Alhourani A, Tian R, et al. Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage[J]. npj 2D Materials and Applications, 2022, 6(1): 3. doi: 10.1038/s41699-021-00279-0
|
[15] |
Dhanola A, Gajrani K K. Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review[J]. Journal of Molecular Liquids, 2023: 122523.
|
[16] |
Sekhon S S, Kaur P, Kim Y H, et al. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis[J]. npj 2D Materials and Applications, 2021, 5(1): 21. doi: 10.1038/s41699-021-00202-7
|
[17] |
Du J, Pei S, Ma L, et al. 25th anniversary article: carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced materials, 2014, 26(13): 1958-1991. doi: 10.1002/adma.201304135
|
[18] |
Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. doi: 10.1002/adma.201504245
|
[19] |
Yang Y, Wei Y, Guo Z, et al. From materials to devices: Graphene toward practical applications[J]. Small Methods, 2022, 6(10): 2200671. doi: 10.1002/smtd.202200671
|
[20] |
Duan K, Zhu F, Tang K, et al. Effects of chirality and number of graphene layers on the -mechanical properties of graphene-embedded copper nanocomposites[J]. Computational Materials Science, 2016, 117: 294-299. doi: 10.1016/j.commatsci.2016.02.007
|
[21] |
Munoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12): 297-322. doi: 10.1002/cvde.201300051
|
[22] |
Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. doi: 10.1039/C5TA00252D
|
[23] |
Yazdi G R, Iakimov T, Yakimova R. Epitaxial graphene on SiC: a review of growth and characterization[J]. Crystals, 2016, 6(5): 53. doi: 10.3390/cryst6050053
|
[24] |
Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene oxide by Hummers method assisted with an electric field[J]. Materials Research Express, 2019, 6(5): 055602. doi: 10.1088/2053-1591/ab023d
|
[25] |
Shearer C J, Slattery A D, Stapleton A J, et al. Accurate thickness measurement of graphene[J]. Nanotechnology, 2016, 27(12): 125704. doi: 10.1088/0957-4484/27/12/125704
|
[26] |
Bruna M, Borini S. Assessment of graphene quality by quantitative optical contrast analysis[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175307. doi: 10.1088/0022-3727/42/17/175307
|
[27] |
Bayle M, Reckinger N, Felten A, et al. Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast[J]. Journal of Raman Spectroscopy, 2018, 49(1): 36-45. doi: 10.1002/jrs.5279
|
[28] |
Ouyang W, Liu X Z, Li Q, et al. Optical methods for determining thicknesses of few-layer graphene flakes[J]. Nanotechnology, 2013, 24(50): 505701. doi: 10.1088/0957-4484/24/50/505701
|
[29] |
Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
|
[30] |
Yoon D, Moon H, Cheong H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. J. Korean Phys. Soc, 2009, 55(3): 1299-1303
|
[31] |
Mondal M, Dash A K, Singh A. Optical microscope based universal parameter for identifying layer number in two-dimensional materials[J]. ACS nano, 2022, 16(9): 14456-14462. doi: 10.1021/acsnano.2c04833
|
[32] |
Li X L, Qiao X F, Han W P, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates[J]. Nanoscale, 2015, 7(17): 8135-8141. doi: 10.1039/C5NR01514F
|
[33] |
Ozaki Y, Šašic S. Introduction to Raman spectroscopy[J]. Pharmaceutical Applications of Raman Spectroscopy, 2008: 1-28.
|
[34] |
GB/T 40069-2021. 纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法[S]. 北京: 中国标准出版社, 2021
|
[35] |
Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
|
[36] |
Kumar N, Salehiyan R, Chauke V, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224 doi: 10.1016/j.flatc.2021.100224
|
[37] |
GB/T 15000.5-2023. 标准样品工作导则 第5部分: 质量控制样品的内部研制[S]. 北京: 中国标准出版社, 2023
|