Turn off MathJax
Article Contents
LV Qingbin, LIANG Junmei, ZHAO Haibo, ZHAO Xiaoning, LIU Ran, WANG Bingyue. Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0218
Citation: LV Qingbin, LIANG Junmei, ZHAO Haibo, ZHAO Xiaoning, LIU Ran, WANG Bingyue. Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0218

Measurement and Analysis of Graphene Layers Based on Raman Spectroscopy

doi: 10.12338/j.issn.2096-9015.2024.0218
  • Received Date: 2024-06-30
  • Accepted Date: 2024-08-13
  • Rev Recd Date: 2024-07-29
  • Available Online: 2024-09-11
  • Graphene material layer control is one of the important indicators to achieve high-quality development of graphene. Accurately measuring the number of layers is the core for the research, development and application of graphene materials, and analyzing the number of layers for graphene materials has a significant impact on their product performance and applications., the necessity of graphene layer number measurement is first described, and then several existing methods for measuring graphene layers are summarized, including optical contrast method, Raman spectroscopy, atomic force microscopy, and high-resolution transmission electron microscopy. The number of layers of graphene samples prepared by mechanical exfoliation method is measured and analyzed based on Raman spectroscopy . Meanwhile, the randomly selected graphene samples are measured using Raman spectroscopy. By selecting the testing conditions, the signal value of Raman mode peak for blank substrate silicon is higher than 5000. Under the testing method, the characteristic peaks of silicon Raman modes containing graphene samples are measured, we also calculate the ratio of Raman peak heights between graphene containing samples and blank substrates. Compare this ratio with the theoretical value measured by Raman spectroscopy in the national standard to determine the number of layers for graphene samples. The test results show that the developed technique can measure the layer number of graphene film samples prepared by mechanical stripping method, and further provide a reference for detection analysis of the layer number of graphene materials.
  • loading
  • [1]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [2]
    Wu J, Lin H, Moss D J, et al. Graphene oxide for photonics, electronics and optoelectronics[J]. Nature Reviews Chemistry, 2023, 7(3): 162-183. doi: 10.1038/s41570-022-00458-7
    [3]
    Xia Y, Gao W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591. doi: 10.1002/adfm.202204591
    [4]
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6: 183-191. doi: 10.1038/nmat1849
    [5]
    Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. doi: 10.1039/C1CS15078B
    [6]
    Zurutuza A, Marinelli C. Challenges and opportunities in graphene commercialization[J]. Nature nanotechnology, 2014, 9(10): 730-734. doi: 10.1038/nnano.2014.225
    [7]
    Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials[J]. National Science Review, 2018, 5(1): 90-101. doi: 10.1093/nsr/nwx055
    [8]
    Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry[J]. Nature materials, 2019, 18(6): 520-524. doi: 10.1038/s41563-019-0341-4
    [9]
    Barkan T. Graphene: the hype versus commercial reality[J]. Nature nanotechnology, 2019, 14(10): 904-906. doi: 10.1038/s41565-019-0556-1
    [10]
    Pollard A J. Metrology for graphene and 2D materials[J]. Measurement Science and Technology, 2016, 27(9): 092001. doi: 10.1088/0957-0233/27/9/092001
    [11]
    Wyss K M, Luong D X, Tour J M. Large-scale syntheses of 2D materials: flash joule heating and other methods[J]. Advanced materials, 2022, 34(8): 2106970. doi: 10.1002/adma.202106970
    [12]
    Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors[J]. Nature Electronics, 2022, 5(5): 281-288. doi: 10.1038/s41928-022-00755-5
    [13]
    Das S, Pandey D, Thomas J, et al. The role of graphene and other 2D materials in solar photovoltaics[J]. Advanced Materials, 2019, 31(1): 1802722. doi: 10.1002/adma.201802722
    [14]
    Carey T, Alhourani A, Tian R, et al. Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage[J]. npj 2D Materials and Applications, 2022, 6(1): 3. doi: 10.1038/s41699-021-00279-0
    [15]
    Dhanola A, Gajrani K K. Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review[J]. Journal of Molecular Liquids, 2023: 122523.
    [16]
    Sekhon S S, Kaur P, Kim Y H, et al. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis[J]. npj 2D Materials and Applications, 2021, 5(1): 21. doi: 10.1038/s41699-021-00202-7
    [17]
    Du J, Pei S, Ma L, et al. 25th anniversary article: carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced materials, 2014, 26(13): 1958-1991. doi: 10.1002/adma.201304135
    [18]
    Jang H, Park Y J, Chen X, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. doi: 10.1002/adma.201504245
    [19]
    Yang Y, Wei Y, Guo Z, et al. From materials to devices: Graphene toward practical applications[J]. Small Methods, 2022, 6(10): 2200671. doi: 10.1002/smtd.202200671
    [20]
    Duan K, Zhu F, Tang K, et al. Effects of chirality and number of graphene layers on the -mechanical properties of graphene-embedded copper nanocomposites[J]. Computational Materials Science, 2016, 117: 294-299. doi: 10.1016/j.commatsci.2016.02.007
    [21]
    Munoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12): 297-322. doi: 10.1002/cvde.201300051
    [22]
    Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. doi: 10.1039/C5TA00252D
    [23]
    Yazdi G R, Iakimov T, Yakimova R. Epitaxial graphene on SiC: a review of growth and characterization[J]. Crystals, 2016, 6(5): 53. doi: 10.3390/cryst6050053
    [24]
    Guo C, Cai Y, Zhao H, et al. Efficient synthesis of graphene oxide by Hummers method assisted with an electric field[J]. Materials Research Express, 2019, 6(5): 055602. doi: 10.1088/2053-1591/ab023d
    [25]
    Shearer C J, Slattery A D, Stapleton A J, et al. Accurate thickness measurement of graphene[J]. Nanotechnology, 2016, 27(12): 125704. doi: 10.1088/0957-4484/27/12/125704
    [26]
    Bruna M, Borini S. Assessment of graphene quality by quantitative optical contrast analysis[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175307. doi: 10.1088/0022-3727/42/17/175307
    [27]
    Bayle M, Reckinger N, Felten A, et al. Determining the number of layers in few-layer graphene by combining Raman spectroscopy and optical contrast[J]. Journal of Raman Spectroscopy, 2018, 49(1): 36-45. doi: 10.1002/jrs.5279
    [28]
    Ouyang W, Liu X Z, Li Q, et al. Optical methods for determining thicknesses of few-layer graphene flakes[J]. Nanotechnology, 2013, 24(50): 505701. doi: 10.1088/0957-4484/24/50/505701
    [29]
    Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
    [30]
    Yoon D, Moon H, Cheong H, et al. Variations in the Raman spectrum as a function of the number of graphene layers[J]. J. Korean Phys. Soc, 2009, 55(3): 1299-1303
    [31]
    Mondal M, Dash A K, Singh A. Optical microscope based universal parameter for identifying layer number in two-dimensional materials[J]. ACS nano, 2022, 16(9): 14456-14462. doi: 10.1021/acsnano.2c04833
    [32]
    Li X L, Qiao X F, Han W P, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates[J]. Nanoscale, 2015, 7(17): 8135-8141. doi: 10.1039/C5NR01514F
    [33]
    Ozaki Y, Šašic S. Introduction to Raman spectroscopy[J]. Pharmaceutical Applications of Raman Spectroscopy, 2008: 1-28.
    [34]
    GB/T 40069-2021. 纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法[S]. 北京: 中国标准出版社, 2021
    [35]
    Rubino S, Akhtar S, Leifer K. A simple transmission electron microscopy method for fast thickness characterization of suspended graphene and graphite flakes[J]. Microscopy and Microanalysis, 2016, 22(1): 250-256. doi: 10.1017/S143192761501569X
    [36]
    Kumar N, Salehiyan R, Chauke V, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224 doi: 10.1016/j.flatc.2021.100224
    [37]
    GB/T 15000.5-2023. 标准样品工作导则 第5部分: 质量控制样品的内部研制[S]. 北京: 中国标准出版社, 2023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (109) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return