Turn off MathJax
Article Contents
FU Zhengwei, ZHAO Longhui, ZHANG Qi, YANG Shuiwang, JIANG Yuxuan, CHEN Xiaoting. Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0242
Citation: FU Zhengwei, ZHAO Longhui, ZHANG Qi, YANG Shuiwang, JIANG Yuxuan, CHEN Xiaoting. Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film[J]. Metrology Science and Technology. doi: 10.12338/j.issn.2096-9015.2024.0242

Experimental Study of Wall Shear Stress Based on Double-Layer Hot Film

doi: 10.12338/j.issn.2096-9015.2024.0242
  • Received Date: 2024-07-19
  • Accepted Date: 2024-08-21
  • Rev Recd Date: 2024-08-19
  • Available Online: 2024-09-04
  • Wall shear stress is a direct parameter used to accurately study the frictional resistance of fluid flow over a solid wall and is a key factor in evaluating the performance of aircraft equipment and surface friction distribution. Accurate measurement of wall shear stress is crucial for determining the viscous resistance of aircraft and optimizing their structure. This study focuses on verifying a wall shear stress measurement method based on double-layer hot film technology. A long circular pipeline air flow test platform was designed to verify the accuracy of the method in measuring wall shear stress. Additionally, the stability and repeatability of the double-layer hot film sensor for measuring wall shear stress under different temperature differences were evaluated. At ΔT = 30℃, 40℃, 50℃, and 60℃, the maximum measured wall shear stress was 1.27 Pa. The relative synthetic uncertainty of the wall shear stress measurement was 0.50%, and the relative error was less than 4%. The results demonstrate the reliability of the method and its applicability for the precise measurement of wall shear stress.
  • loading
  • [1]
    Naughton J W, Sheplak M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences, 2002, 38(6): 515-570.
    [2]
    高南, 刘玄鹤. 实用化壁面切应力测量技术的综述与展望[J]. 空气动力学学报, 2022, 40(3): 1-24. doi: 10.7638/kqdlxxb-2021.0303
    [3]
    Sheplak M, Cattafesta L, Nishida T, et al. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004.
    [4]
    付政伟, 杨水旺, 张琦, 等. 浮动元件壁面剪切应力传感器研究进展[J]. 计测技术, 2023, 43(6): 20-29. doi: 10.11823/j.issn.1674-5795.2023.06.02
    [5]
    Abbas A, Bugeda G, Ferrer E, et al. Drag reduction via turbulent boundary layer flow control[J]. Sci. China Technol. Sci, 2017, 60(9): 1281-1290. doi: 10.1007/s11431-016-9013-6
    [6]
    Sheplak M, Cattafesta L, Nishida T. MEMS shear stress sensors: promise and progress[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004.
    [7]
    雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 中国测试, 2016, 42(7): 1-8. doi: 10.11857/j.issn.1674-5124.2016.07.001
    [8]
    周厚祚. 埋藏式SiC高温剪应力传感器的研究[D]. 厦门: 厦门大学, 2019.
    [9]
    Pan T, HYMAN D, MEHREGANY M, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 66-72. doi: 10.2514/2.665
    [10]
    Hyman D, Pan T, Reshotko E, et al. Micro-fabricated shear stress sensors[J]. AIAA Journal, 1999, 37(1): 73-78. doi: 10.2514/2.666
    [11]
    Patel M P, Reshotko E, Hyman D. Micro-fabricated shear-stress sensors[J]. AIAA Journal, 2002, 40(8): 1582-1588. doi: 10.2514/2.1827
    [12]
    Zong Z. MEMS floating element sensor array for wall shear stress measurement under a turbulent boundary layer[D]. Massachusetts: Tufts University, 2014.
    [13]
    Zhao Z, Long K R, Gallman J, et al. Flow testing of a MEMS floating element shear stress sensor[C]. 52nd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting, 2014.
    [14]
    刘玄鹤. 基于双层热膜的免标定摩阻测量方法研究[D]. 大连: 大连理工大学, 2021.
    [15]
    王昊. 基于双层热膜技术的壁面剪切应力测量方法研究[D]. 大连: 大连理工大学, 2021.
    [16]
    孙宝云, 马炳和. 高性能柔性热膜微传感器及其在流体壁面剪应力测量中的应用[J]. 金属加工(冷加工), 2022(9): 96.
    [17]
    Wang D Y, Deng J J, Yan Y C, et al. Temperature dependence of constant current hot-film sensors: Investigation with application to temperature correction for wall-shear stress measurements[J]. Flow Measurement and Instrumentation, 2024, 97: 102616. doi: 10.1016/j.flowmeasinst.2024.102616
    [18]
    刘丹. 免标定壁面剪应力测量技术研究[J]. 科技创新与应用, 2023, 13(34): 188-192.
    [19]
    Lundstrom H. Investigation of heat transfer from thin wires in air and a new method for temperature correction of hot-wire anemometers[J]. Exp. Therm. Fluid Sci. 2021, 128: 110403.
    [20]
    Kuchler A, Bodenschatz D, Lohse D, et al. Fabrication of freestanding Pt nanowires for use as thermal anemometry probes in turbulence measurements[J]. Microsyst Nano, 2021, 7: 28. doi: 10.1038/s41378-021-00255-0
    [21]
    Brunier C F, Barros D C, Pique A, et al. Thermal response of a nanoscale hot-wire in subsonic and supersonic flows[J]. Exp. Fluid, 2023, 64(1): 8. doi: 10.1007/s00348-022-03545-z
    [22]
    刘祺, 夏明嫣, 庞鹏, 等. 恒温模式驱动下的二维微机电系统热膜式壁面切应力传感器水下标定试验研究[J]. 海洋工程, 2024(5): 1-10.
    [23]
    Ligęza P. Method of testing fast-changing and pulsating flows by means of a hotwire anemometer with simultaneous measurement of voltage and current of the sensor[J]. Measurement, 2022, 187: 110291. doi: 10.1016/j.measurement.2021.110291
    [24]
    Xiong W, Zhu C, Guo D, et al. Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception[J]. Nano Energy, 2021, 90: 106550. doi: 10.1016/j.nanoen.2021.106550
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (195) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return