Volume 65 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
ZHAO Sha, LU Da, MENG Jing, SONG Xiaohui. Application of Remote Calibration of Time and Frequency in Power System[J]. Metrology Science and Technology, 2021, 65(4): 14-18. doi: 10.3969/j.issn.2096-9015.2021.04.02
Citation: ZHAO Sha, LU Da, MENG Jing, SONG Xiaohui. Application of Remote Calibration of Time and Frequency in Power System[J]. Metrology Science and Technology, 2021, 65(4): 14-18. doi: 10.3969/j.issn.2096-9015.2021.04.02

Application of Remote Calibration of Time and Frequency in Power System

doi: 10.3969/j.issn.2096-9015.2021.04.02
  • Available Online: 2021-04-15
  • Publish Date: 2021-04-15
  • The time and frequency standards used by many power system organizations need to obtain a higher precision time standard source for time and frequency comparison to maintain the accurate operation of atomic clocks, thus putting forward requirements for their remote calibration, synchronization of time and frequency magnitude traceability, and effectiveness. Given the above problems, the GNSS time and frequency transfer method based on the common view of navigation satellites is proposed to solve the problem of remote calibration of clocks by analyzing the demand for time and frequency measurements in power systems and the current status of research technology; a remote time and frequency traceability system for power systems that can be timely traced to the national time and frequency reference is designed, and the specific implementation plan and data processing process based on the time and frequency transfer method are clarified. Through the analysis of the time and frequency standard device and the national benchmark UTC (NIM) co-view data, the research results show that the absolute value of the deviation (1-day) is no more than 10 ns, which solves the problem of synchronization and timeliness of traceability.
  • loading
  • [1]
    许晓慧, 陈丽娟, 钟小强, 等. 智能电网导论[M]. 北京: 中国电力出版社, 2009: 1-13.
    [2]
    兰惠. 时间同步系统在宁夏电力的推广应用[J]. 电力系统通信, 2011, 32(219): 62-65.
    [3]
    高翔. 智能变电站技术[M]. 北京: 中国电力出版社, 2011: 151-162.
    [4]
    徐帅, 杨帆, 赵旭阳, 等. 电力系统时间同步管理应用分析与研究[J]. 电力与能源, 2018, 39(6): 770-772.
    [5]
    余从极, 何宏建. 电力信息化系统时间同步技术研究及运用[J]. 通信电源技术, 2018, 35(11): 171-172.
    [6]
    王晔. 基于GNSS共视的远程时间频率溯源的性能提升方法研究[D]. 北京: 北京交通大学, 2018.
    [7]
    杨航. 基于UTC的远程时间频率校准方法改进及应用[D]. 北京: 北京交通大学, 2015.
    [8]
    龙波, 尤捷雯, 张宇, 等. 基于NIMDO的远程时间频率溯源[J]. 计量与测试技术, 2019, 46(8): 9-11.
    [9]
    凌晓波, 涂崎, 方国盛. 基于北斗的电力系统时间同步安全技术研究[J]. 自动化与仪器仪表, 2018(5): 84-88.
    [10]
    陈瑞琼, 刘娅, 李孝辉, 等. 基于卫星共视的远程时间频率校准系统[J]. 电子测量与仪器学报, 2016, 30(1): 38-44.
    [11]
    杨庆, 单庆晓. 卫星授时原理与应用[M]. 北京: 国防工业出版社, 2013: 129-145.
    [12]
    梁坤, 张爱敏, 杨军, 等. 时间与频率标准远程校准规范: JJF1206-2018[S]. 北京: 国家市场监督管理总局, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (636) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return