留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极性反转纳喷雾的氨基酸质谱测量方法

李康铭 高晓梅 龚晓云 弓爱君

李康铭,高晓梅,龚晓云,等. 基于极性反转纳喷雾的氨基酸质谱测量方法[J]. 计量科学与技术,2023, 67(3): 3-11, 71 doi: 10.12338/j.issn.2096-9015.2023.0062
引用本文: 李康铭,高晓梅,龚晓云,等. 基于极性反转纳喷雾的氨基酸质谱测量方法[J]. 计量科学与技术,2023, 67(3): 3-11, 71 doi: 10.12338/j.issn.2096-9015.2023.0062
LI Kangming, GAO Xiaomei, GONG Xiaoyun, GONG Aijun. Amino Acid Mass Spectrometry Based on Polarity-Reversing Nano-Electrospray Ionization[J]. Metrology Science and Technology, 2023, 67(3): 3-11, 71. doi: 10.12338/j.issn.2096-9015.2023.0062
Citation: LI Kangming, GAO Xiaomei, GONG Xiaoyun, GONG Aijun. Amino Acid Mass Spectrometry Based on Polarity-Reversing Nano-Electrospray Ionization[J]. Metrology Science and Technology, 2023, 67(3): 3-11, 71. doi: 10.12338/j.issn.2096-9015.2023.0062

基于极性反转纳喷雾的氨基酸质谱测量方法

doi: 10.12338/j.issn.2096-9015.2023.0062
基金项目: 国家重点研发计划项目(2022YFF0705001)。
详细信息
    作者简介:

    李康铭(1998-),中国计量科学研究院在读研究生,研究方向:单细胞质谱分析,邮箱:likangming@nim.ac.cn

    通讯作者:

    龚晓云(1988-),中国计量科学研究院副研究员,研究方向:质谱离子源研发,邮箱:gxy@nim.ac.cn

    弓爱君(1965-),北京科技大学教授,研究方向:污染物检测、环境行为及降解机理,邮箱:gongaijun@ustb.edu.cn

  • 中图分类号: TB99

Amino Acid Mass Spectrometry Based on Polarity-Reversing Nano-Electrospray Ionization

  • 摘要: 氨基酸分析一直是化学和生物学分析研究的重要内容,在众多氨基酸分析方法中,质谱法在灵敏度和准确度上具有较大优势。液质联用是目前最为常用的氨基酸质谱分析方法,需要使用到电喷雾离子源。然而,电喷雾离子源对氨基酸离子化效率有限,尤其是酸性氨基酸,这严重影响了氨基酸质谱分析方法检测灵敏度的进一步提升。基于自主搭建的极性反转纳喷雾离子源(PR-nESI),建立了20种常见氨基酸的质谱检测方法。与基于普通纳喷雾离子源(nano-ESI)的检测方法相比,PR-nESI显著提高了检测信噪比,提升幅度最高可达数十倍。此外,PR-nESI具有较强的除盐效果,能有效抑制氨基酸金属离子加合物的形成,极大地方便了后期谱图指认。该氨基酸检测方法未来在临床、食品等领域中具有较为广阔的应用前景。
  • 图  1  不同负高压时间的提取离子流图

    Figure  1.  The extracted ion chromatograms of isoleucine with varying durations of negative high pressure (1, 3, 6, and 9 s)

    图  2  Ile的PR-nESI质谱图

    Figure  2.  Mass spectra of 30 μmol/L pure aqueous solutions of isoleucine (Ile) in positive ion mode under PR-nESI

    图  3  不同负高压时间结果的S/N

    Figure  3.  S/N calculation result of duration of

    图  4  不同负电压下PR-nESI 对异亮氨酸检测所得的S/N

    Figure  4.  Signal-to-noise ratio (S/N) of isoleucine detected by PR-nESI under different negative voltage settings

    图  5  正离子模式下30 μmol/L Asp、Pro和Lys 纯水溶液在nano-ESI和PR-nESI下的质谱图

    Figure  5.  Mass spectra of 30 μmol/L pure aqueous solutions of aspartic acid (Asp), proline (Pro), and lysine (Lys) in positive ion mode under nano-ESI and PR-nESI

    图  6  加入1 mmol/L NaCl后Asp、Pro和Lys 溶液在nano-ESI和PR-nESI下的质谱图

    Figure  6.  Mass spectra of aspartic acid (Asp), proline (Pro), and lysine (Lys) solutions under nano-ESI and PR-nESI after the addition of 1 mmol/L sodium chloride (NaCl)

    表  1  nano-ESI和PR-nESI对20种氨基酸的平均检测S/N及比值

    Table  1.   Average detection signal-to-noise ratio (S/N) and ratios for 20 amino acids analyzed using nano-ESI and PR-nESI

    氨基酸分类氨基酸名称S/N比值
    nano-ESIPR-nESIPR-nESI/nano-ESI
    酸性氨基酸天冬氨酸1.16203.53174.7
    谷氨酸2.71333.54123.0
    中性氨基酸半胱氨酸8.43154.7018.3
    天冬酰胺10.84125.1911.6
    苯丙氨酸40.92132.423.2
    谷氨酰胺13.68211.8715.5
    酪氨酸29.16159.135.5
    丝氨酸16.54119.037.2
    甲硫氨酸39.22157.694.0
    色氨酸43.57171.493.9
    缬氨酸54.01191.583.6
    甘氨酸14.30145.2810.2
    亮氨酸8.1092.2811.4
    丙氨酸11.9599.838.4
    异亮氨酸30.32162.005.3
    苏氨酸13.73173.2012.6
    脯氨酸24.57124.225.1
    碱性氨基酸组氨酸463.14592.001.3
    赖氨酸484.30578.661.2
    精氨酸435.80504.371.2
    下载: 导出CSV
  • [1] Ohno H, Fukumoto K. Amino acid ionic liquids.[J]. Accounts of Chemical Research, 2007, 40(11): 1122. doi: 10.1021/ar700053z
    [2] Liu J, Poojary M M, Zhu L, et al. Phenolic Acid–Amino Acid Adducts Exert Distinct Immunomodulatory Effects in Macrophages Compared to Parent Phenolic Acids[J]. Food Chem, 2023, 71(5): 2344-2355. doi: 10.1021/acs.jafc.2c06658
    [3] 吴雪, 薄梦, 孙晓璟, 等. 液相色谱-质谱法检测甲磺酸沙非胺中基因毒性杂质[J]. 计量科学与技术, 2022, 66(11): 27-30. doi: 10.12338/j.issn.2096-9015.2021.0632
    [4] 汤逸飞, 屠雨晨, 黄芳, 等. 基于QuEChERS-气相色谱三重四级杆串联质谱内标法测定结球甘蓝中30种农药残留的不确定度评定[J]. 计量科学与技术, 2022, 66(2): 25-32,8.
    [5] 张再平, 王玉. 电感耦合等离子体质谱法测定大米粉中砷、镉含量及不确定度评估[J]. 计量科学与技术, 2021, 65(12): 60-65. doi: 10.12338/j.issn.2096-9015.2019.0427
    [6] 王许欣, 李晓敏, 张庆合. 不同定量方法在婴儿配方奶粉中维生素B12测量中的不确定度评估[J]. 计量科学与技术, 2022, 66(9): 23-27,46. doi: 10.12338/j.issn.2096-9015.2022.0089
    [7] Kamleh, Anas M, Snowden, et al. LC-MS Metabolomics of Psoriasis Patients Reveals Disease Severity-Dependent Increases in Circulating Amino Acids That Are Ameliorated by Anti-TNF alpha Treatment[J]. Proteome Res, 2015, 14(1): 557-566. doi: 10.1021/pr500782g
    [8] 余利星, 翟睿, 龚晓云, 等. 基于磁性纳米材料分离的肿瘤标志物HSP90α质谱分析方法[J]. 计量技术, 2020(5): 14-18,78.
    [9] 金涛, 潘本松, 聂洪港. 基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用[J]. 计量科学与技术, 2022, 66(3): 3-22.
    [10] Vinayavekhin N, Homan E A, Saghatelian A. Exploring Disease through Metabolomics[J]. Acs Chemical Biology, 2010, 5(1): 91-103. doi: 10.1021/cb900271r
    [11] Liao H W, Chen G Y, Wu M S, et al. Development of a Postcolumn Infused-Internal Standard Liquid Chromatography Mass Spectrometry Method for Quantitative Metabolomics Studies[J]. Journal of Proteome Research, 2017, 16(2): 1097-1104. doi: 10.1021/acs.jproteome.6b01011
    [12] 赵春霞, 许国旺. 基于液相色谱-质谱技术的代谢组学分析方法新进展[J]. 分析科学学报, 2014, 30(5): 761-766. doi: 10.13526/j.issn.1006-6144.2014.05.030
    [13] Hollenberg J L, Ifft J B. Hydration numbers by near-infrared spectrophotometry. 1. Amino acids[J]. Journal of Physical Chemistry, 1982, 86(11): 1938-1941. doi: 10.1021/j100208a007
    [14] Gui M, Rutan S C, Agbodjan A. Kinetic Detection of Overlapped Amino Acids in Thin-Layer Chromatography with a Direct Trilinear Decomposition Method[J]. Analytical Chemistry, 1995, 67(18): 3293-3299. doi: 10.1021/ac00114a028
    [15] Brunauer L S, Caslavka K E, Groningen K V. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories[J]. Journal of Chemical Education, 2014, 91(12): 2216-2220. doi: 10.1021/ed500226q
    [16] Syu K Y, Lin C L, Huang H C, et al. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography[J]. Journal of Agricultural & Food Chemistry, 2008, 56(17): 7637-7643.
    [17] 林丽敏, 张建莹, 肖锋, 等. 非衍生化/液相色谱-串联质谱法测定果蔬中氨基酸类有机磷除草剂残留[J]. 分析测试学报, 2022, 41(11): 1702-1706. doi: 10.19969/j.fxcsxb.22042805
    [18] Mitsuru T, Keishiro A, Tomotaka T, et al. Laser Desorption Ionization-Mass Spectrometry with Graphite Carbon Black Nanoparticles for Simultaneous Detection of Taste- and Odor-Active Compounds[J]. ACS Appl. Nano Mater, 2022, 5(2): 2187-2194. doi: 10.1021/acsanm.1c03890
    [19] Masataka Wakayama, Naohiro Aoki, Haruto Sasaki, et al. Simultaneous Analysis of Amino Acids and Carboxylic Acids by Capillary Electrophoresis−Mass Spectrometry Using an Acidic Electrolyte and Uncoated Fused-Silica Capillary[J]. Analytical Chemistry, 2010, 82(24): 9967-9976. doi: 10.1021/ac1019039
    [20] 谭思源, 李曼莉, 傅博强, 等. 单细胞质谱分析方法研究进展[J]. 计量科学与技术, 2021, 65(5): 20-29,13. doi: 10.12338/j.issn.2096-9015.2020.9021
    [21] 李佳乐, 武利庆, 金有训, 等. 人血清白蛋白纯品含量的同位素稀释质谱方法研究[J]. 计量学报, 2016, 37(3): 328-332. doi: 10.3969/j.issn.1000-1158.2016.03.022
    [22] 苏福海. 《液相色谱-飞行时间质谱联用仪性能测定方法》国家标准解读[J]. 计量科学与技术, 2020(10): 3-5. doi: 10.3969/j.issn.2096-9015.2020.10.01
    [23] 朱文, 倪鑫茹, 徐昇. 同位素稀释质谱法在蛋白质计量比对中的应用[J]. 计量与测试技术, 2022, 49(7): 12-14. doi: 10.15988/j.cnki.1004-6941.2022.7.005
    [24] Pandey R , Collins M , Lu X , et al. Novel Strategy for Untargeted Chiral Metabolomics using Liquid Chromatography-High Resolution Tandem Mass Spectrometry[J]. Analytical chemistry, 93(14): 5805-5814.
    [25] 易可可, 谢洁, 龚晓云, 等. 液相色谱-串联质谱应用研究进展[J]. 计量科学与技术, 2021(2): 7-15,6.
    [26] Feng L L, Gong X Y, Song J F, et al. Strong Acid Anions Significantly Increasing the Charge State of Proteins during Electrospray Ionization[J]. Anal. Chem, 2020, 92(2): 1770-1779. doi: 10.1021/acs.analchem.9b03416
    [27] Emmett M R, Caprioli R M. Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins[J]. Journal of the American Society for Mass Spectrometry, 1994, 5(7): 605-613. doi: 10.1016/1044-0305(94)85001-1
    [28] Wilm M S, Mann M. Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? International Journal of Mass Spectrometry & Ion Processes, 1994, 136(2-3): 167-180.
    [29] Wei Z W, Xiong X C, Guo C G, et al. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy[J]. Analytical Chemistry, 2015, 87(22): 11242-11248. doi: 10.1021/acs.analchem.5b02115
    [30] Nishant C, Catherine A C, David B G, et al. High-frequency AC electrospray ionization source for mass spectrometry of biomolecules[J]. Journal of the American Society for Mass Spectrometry, 2010, 21(11): 1852-1856. doi: 10.1016/j.jasms.2010.06.023
    [31] Gong X Y, Xiong X C, Zhao Y C, et al. Boosting the Signal Intensity of Nanoelectrospray Ionization by Using a Polarity-Reversing High-Voltage Strategy[J]. Anal. Chem, 2017, 89(13): 7009-7016. doi: 10.1021/acs.analchem.7b00555
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  151
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 录用日期:  2023-03-17
  • 修回日期:  2023-04-04
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-03-18

目录

    /

    返回文章
    返回