电感耦合等离子体质谱法测定大米粉中砷、镉含量及不 确定度评估

张再平, 王玉

江苏省食品药品监督检验研究院,南京210000

【摘要】 采用微波消解-电感耦合等离子体质谱法 (inductively coupled plasma-mass spectrometry, ICP-MS) 对样品进 行处理与测定,通过创建数学模型,对大米粉中的砷和镉的测定结果进行不确定度评估与分析,最终得出其不确定 度分别为(0.182±0.012) mg/kg、(0.262±0.016) mg/kg。不确定度主要来源为标准曲线拟合和测量。可为 ICP-MS 法 测定大米粉中有毒有害元素检测的准确性和方法的可靠性提供依据。

【关键词】 ICP-MS; 不确定度; 砷; 镉

DOI: 10.12338/j.issn.2096-9015.2019.0427

【引用本文】张再平,王玉.电感耦合等离子体质谱法测定大米粉中砷、镉含量及不确定度评估 [J]. 计量科学与技术, 2021, 65(12): 60-65.

Determination of Arsenic and Cadmium in Powdered Rice by Inductively Coupled Plasma-Mass Spectrometry and Evaluation of the Uncertainty

ZHANG Zaiping, WANG Yu

Jiangsu Institute for Food and Drug Control, Nanjing 210000, China

[Abstract] The microwave digest technique combined with inductively coupled plasma-mass spectrometry (ICP-MS) was used for the determination of arsenic and cadmium in powdered rice. The measurement uncertainty was evaluated by establishing a mathematical model. The measurement results of arsenic and cadmium in powdered rice were (0.182 ± 0.012) mg/kg and (0.262 ± 0.016) mg/kg, respectively, with the coverage probability of 95%. The major uncertainty components were from standard curve fitting and test solution measurement. The research method can be used for measurement of harmful elements in powdered rice by ICP-MS.

[Key words] ICP-MS, uncertainty, arsenic, cadmium

0 引言

大米作为世界范围内三大主要粮食作物之一, 有超过一半的人口以大米为主要粮食作物,而中国 以此为主食的人口超过 65%^[1]。随着工业化和城市 化的推进,废水未经处理就排放及过量使用农药、 化肥等,造成我国部分地区土壤重金属污染尤为严 重,而镉、砷又是其中两个重要组分^[2-3],进而使大 米等初级农产品受到了不同程度的砷镉污染^[4],对 居民的健康造成了潜在的危害^[5-6]。因此,准确检 测大米中砷镉含量是确保食品安全的基础。电感耦 合等离子体质谱能同时测定多种元素,方便、快捷、 准确^[7-8]。测量不确定度是定量分析结果的重要组成部分,可以定量评估测量结果的质量,并指出结果的可信度,是实验室一项必要和重要的工作^[9]。目前,多见大米中镉的不确定度评定报道^[10-11],本文同时对大米粉中砷和镉限量值^[12]附近含量进行测量不确定度分析与评定,对该情况下检测报告的准确度以及临界值的判定具有重要意义。

1 材料与方法

1.1 仪器与试剂

Agilent 7700 电感耦合等离子体质谱仪 (美国

作者简介:张再平(1987-),江苏省食品药品监督检验研究院主管药师,研究方向:食品和化妆品质量与安全,邮箱:zhang_zaiping@163.com。

Agilent 公司); Mars6 高压微波消解仪(美国 CEM 公司);电子天平 (*d*=0.01 mg, 德国 Sartorius 公司; *d*=0.1 mg, 瑞士梅特勒公司)。

硝酸(65%,德国 Merck 公司);实验室用水为 Milli-Q 超纯水;砷 (As)单元素标准溶液(批号: 191010-4,1000 μg/mL,国家有色金属及电子材料分 子测试中心);镉 (Cd)单元素标准溶液(批号: 191037-4,1000 μg/mL,国家有色金属及电子材料分 子测试中心);混合内标溶液(含 Bi、Ge、In、Li⁶、 Lu、Rh、Sc、Tb,批号: 50-025CRY2,100 μg/mL,美 国 Agilent 公司)。

1.2 试验方法

1.2.1 标准溶液的配制

1)储备液的配制

取 1 mol/L 硝酸溶液约 50 mL 加入干净的塑料 容器中,精密称定,再分别量取砷单元素标准溶液、 镉单元素标准溶液(1000 μg/mL)各 0.1 mL 置于该 塑料容器中,分别精密称定,摇匀,得约 2 μg/mL As 和 Cd 的混合标准储备溶液。

2)标准工作溶液的配制

取 5 份 1 mol/L 硝酸溶液约 50 mL 分别加入不同干净塑料容器中,精密称定,再分别量取 0.025、0.10、0.15、0.20、0.25 mL 置于上述不同塑料容器中,精密称定,摇匀,得浓度分别约为 1.00、4.00、6.00、8.00、10.0 (ng/mL)的标准工作溶液。

3)内标溶液的配制

精密量取 100 μg/mL Ge、In 混合溶液 0.25 mL, 置于 50 mL 量瓶中,用 1 mol/L 硝酸溶液稀释定容 至刻度,摇匀,得 0.5 μg/mL Ge、In 混合溶液。在线 加入内标溶液,考虑内标管内径与样品管内径的不 同,内标溶液与样品溶液混合后内标元素浓度约为 25 ng/mL。

1.2.2 样品前处理

采用微波消解法,将本品混匀,在样品3个部位 各取约0.6g,精密称定,置于50mL特氟龙微波消 解杯中,加入6mL硝酸,静置过夜,置微波消解仪 中消解,消解程序见表1。消解后,拧开盖子,于100℃ 恒温加热器上加热赶酸30min,取出消解杯,在通风 橱中放冷,将消解液转移至25mL量瓶中,用少量 水洗涤消解罐数次,洗液合并于量瓶中,用水稀释至 刻度,摇匀,作为供试液。

采用相同的方法作试剂空白。

1.2.3 ICP-MS 测量条件 射频功率: 1500 W; 等离子气体流量(氯气): 15 L/min; 辅助气流量(氩气): 1.0 L/min; 雾化气流量 (氩气): 1.0 L/min; 采样锥和截取锥: 镍; 采样深度: 10.0 mm; 重复次数: 3 次; 采用氦气碰撞池模式, 氦 气流量: 5.0 mL/min; 砷 (⁷⁵ As) 积分时间: 0.3 s; 镉 (¹¹¹ Cd) 积分时间: 0.1 s。

表 1 微波消解程序 Tab.1 Microwave digestion program

消解方式	温度/℃	升温时间/min	保持时间/min
微波消解	120	5	15
	180	5	20

测量前,用调谐液将仪器调整至最佳工作状态, 以锗 (⁷² Ge)、铟 (¹¹⁵ In) 为内标元素,分别测定标准 溶液和样品溶液中砷 (⁷⁵ As)、镉 (¹¹¹ Cd) 的含量。

2 实验结果与分析

2.1 线性关系

以待测元素与内标元素信号值的比值为纵坐标,待测元素的浓度为横坐标,得砷和镉的线性回归方程分别为 Y_{As} =0.0182 C_i +1.9921×10⁻⁴, Y_{Cd} =0.0092 C_i +3.7232×10⁻⁵,线性范围为 1 ~ 10 µg/L,相关系数 0.9995。

2.2 精密度实验

制备 6 份供试品溶液进行测定,每份测定 2 次, 结果 RSD 均小于 2.2%。精密度结果如表 2 所示。

表 2 精密度实验结果 Tab.2 Experimental results on precision

次数	1	2	3	4	5	6	均值	标准偏差
砷	0.184	0.181	0.183	0.185	0.175	0.182	0.181	0.0036
镉	0.262	0.26	0.265	0.267	0.271	0.275	0.267	0.0058

2.3 回收率实验

取本品约 0.3 g, 6 份, 精密称定, 置 50 mL 特氟龙 微波消解杯中, 加入标准储备液 30 μl, 按"1.2.2 样品 前处理"方法制备供试品溶液, 结果 As 元素的回收 率为 93.7% ~ 107.3%, Cd 元素的回收率为 94.7% ~ 119.7%。回收率实验结果如表 3 所示。

2.4 样品测定

对 3 份样品进行检测,每份测量 2 次。样品测 定结果如表 4 所示。

3 不确定度评估

3.1 数学模型建立

元素含量(X) =
$$(C - C_0) \cdot \frac{V}{m} \cdot 10^{-3} \cdot rep \cdot R$$

		1	abio Experimen	ital results on r	ecovery rate		
编号	称样(g)	As测得量(ng)	As加入量(ng)	回收率(%)	Cd测得量(ng)	Cd加入量(ng)	回收率(%)
D 1	0.3044	61.5809	61.1883	100.6	60.3856	61.9014	97.6
KI	0.3044	61.4809	61.1883	100.5	58.6106	61.9014	94.7
ЪĴ	0.3027	57.6022	61.1883	94.1	58.9048	61.9014	95.2
K2	0.3027	61.1022	61.1883	99.9	58.8798	61.9014	95.1
D.2	0.3053	64.2108	61.1883	104.9	74.1122	61.9014	119.7
ĸs	0.3053	62.3858	61.1883	102.0	65.8122	61.9014	106.3
D.4	0.3046	63.3681	61.1883	103.6	63.1554	61.9014	102.0
K4	0.3046	59.8931	61.1883	97.9	61.4054	61.9014	99.2
D.5	0.3035	58.6010	61.1883	95.8	65.709	61.9014	106.2
ĸs	0.3035	65.6260	61.1883	107.3	71.059	61.9014	114.8
D/	0.3033	59.6888	61.1883	97.5	63.9892	61.9014	103.4
Ко	0.3033	57.3388	61.1883	93.7	60.4892	61.9014	97.7
均值				99.8			102.7
标准偏差				4.22			8.00

表 3 回收率实验结果 Tab.3 Experimental results on recovery rate

表 4 样品测定结果 Tab.4 Sample measurement results

称样(g)	As _样 (ng/mL)	As _{空白} (ng/mL)	As(mg/kg)	Cd _样 (ng/mL)	Cd _{空白} (ng/mL)	Cd(mg/kg)
0.6038	4.530		0.1865	6.342		0.2621
0.6038	4.385		0.1805	6.316		0.2610
0.6063	4.442	0.0245	0.1821	6.311	0.012	0.2597
0.6063	4.367		0.1791	6.313		0.2598
0.6056	4.462		0.1832	6.431		0.2650
均值			0.182			0.262
标准偏差			0.0028			0.0022

式中, *X* 为试样中元素含量, mg/kg; *C* 为基于线 性回归法计算得出的元素的质量浓度, ng/mL; *C*₀ 为空白溶液中元素的质量浓度, mg/kg; *V* 为试样 溶液最终定容体积, mL; *m* 为样品取样量, g; *rep* 代 表精密度; *R* 代表回收率, %。

3.2 不确定度来源与评估

根据具体实验步骤以及数学模型分析,不确定 度主要来源于被测物浓度 C 引入的不确定度 u_{rel}(C)、 样品称量引入的不确定度 u_{rel}(m)、样液定容引入的 不确定度 u_{rel}(V)、重复性引入的不确定度 u_{rel}(rep) 和回收率引入的不确定度 u_{rel}(R)。

3.2.1 被测物浓度引入的相对不确定度 u_{rel}(C)

被测物浓度 (C) 的不确定度来源于标准溶液、 标准溶液配制过程以及标准曲线的拟合三个方面。

1)元素标准溶液引起的相对不确定度 urel(C1)

经查, 砷、镉元素标准溶液证书载明相对扩展 不确定度均为 0.7% (*k* = 2), 则 *u*_{rel} (*C*₁) = 0.7% /2 = 0.0035。

2)标准溶液配制引起的相对不确定度 urel(C2)

采用重量法配制标准工作溶液。

a. 配制储备液引入的相对不确定度 urel(C2-a)

将塑料容器 (质量为 m_1 , 约 12g) 置于天平上, 去皮,称取质量为 m_2 (约 50 g)的 1 mol/L 硝酸溶 液,再分别加入砷、镉标准溶液约 0.1g,质量由 4 次称量所得 (去皮,溶剂称量及 2 次标准溶液称 量)。电子天平实际分度值 d = 0.01 mg,天平校准证 书显示,5~20g 时天平最大允许误差 $\delta_1 = 0.10$ mg, 20~120g 时天平最大允许误差 $\delta_2 = 0.15$ mg。配制 储备 液引入的不确定度 $u_{rel}(C_{2-a})$ 由 4 次称量引 入,按照矩形分布考虑, $k = \sqrt{3}$,由此 $u_{rel}(C_{2-a}) = \sqrt{\left(\frac{\delta_1}{k} \times \frac{1}{m_1 \times 1000}\right)^2 + 3 \times \left(\frac{\delta_2}{k} \times \frac{1}{m_2 \times 1000}\right)^2} = 0.00000567$ 。 b.配制标准工作溶液引入的相对不确定度

 $u_{\rm rel}(C_{2-b})$

将塑料容器(质量为 m_1 ,约12g)置于天平上,去皮,称取质量为 m_2 (约50g)的1mol/L硝酸溶液,再加 入不同体积储备液,质量由3次称量所得(去皮,溶 剂称量及储备液称量)。按照矩形分布考虑, $k=\sqrt{3}$, 由此标准工作溶液每个点引入的相对不确定度均 为 $u_{rel}(C_{2-b1}) = \sqrt{\left(\frac{\delta_1}{k} \times \frac{1}{m_1 \times 1000}\right)^2 + 3 \times \left(\frac{\delta_2}{k} \times \frac{1}{m_2 \times 1000}\right)^2}$ =0.0000054。标准工作溶液有5个浓度点,故 $u_{rel}(C_{2-b}) = \sqrt{5 \times 0.0000054^2} = 0.000012$ 。

因此,标准溶液配制引起的相对不确定度 $u_{rel}(C_2)=\sqrt{u_{rel}^2(C_{2-a})+u_{rel}^2(C_{2-b})}=0.000013$ 。

3)标准曲线拟合产生的相对不确定度 urel(C3)

对 6 个不同浓度 (含空白)的标准工作溶液重 复测定 3 次,得到相应的待测元素与相应内标的比 率值 Y, 拟合而成的线性回归方程为 Y=aC_i+b,其中 a 为斜率, b 为截距, 测定数据及计算结果如表 5、 表 6 所示。

表 5 砷标准溶液结果表 Tab.5 Arsenic standard solution results

C_i	Y_i	$a C_i + b$	$[Y_i - (a \ C_i + b)]$	$C_i - \overline{C_i}$	$(C_i - \overline{C_i})^2$
0.0000	-0.0001	0.000199	8.95E-08	-5.1070	26.08
0.0000	0.0004	0.000199	4.03E-08	-5.1070	26.08
0.0000	0.0003	0.000199	1.02E-08	-5.1070	26.08
1.0387	0.0193	0.019104	3.86E-08	-4.0683	16.55
1.0387	0.0203	0.019104	1.43E-06	-4.0683	16.55
1.0387	0.0202	0.019104	1.20E-06	-4.0683	16.55
4.1906	0.077	0.076468	2.83E-07	-0.9164	0.84
4.1906	0.0808	0.076468	1.88E-05	-0.9164	0.84
4.1906	0.082	0.076468	3.06E-05	-0.9164	0.84
6.3956	0.1225	0.116599	3.48E-05	1.2886	1.66
6.3956	0.1228	0.116599	3.85E-05	1.2886	1.66
6.3956	0.1183	0.116599	2.89E-06	1.2886	1.66
8.4367	0.1549	0.153747	1.33E-06	3.3297	11.09
8.4367	0.146	0.153747	6.00E-05	3.3297	11.09
8.4367	0.1525	0.153747	1.56E-06	3.3297	11.09
10.578	0.1798	0.192719	1.67E-04	5.4710	29.93
10.578	0.1985	0.192719	3.34E-05	5.4710	29.93
10.578	0.1965	0.192719	1.43E-05	5.4710	29.93

由标准曲线拟合产生的不确定度 u(C₃) 如式(1)。

$$u(C_{3}) = \frac{S_{R}}{a} \sqrt{\frac{1}{p} + \frac{1}{n} + \frac{\left(C_{0} - \overline{C_{i}}\right)^{2}}{\sum_{i=1}^{n} \left(C_{i} - \overline{C_{i}}\right)^{2}}} \qquad (1)$$

其中, S_R 为标准溶液比率残差的标准差; C₀ 为样品中元素的浓度, 样品中砷元素的浓度 C_{0-As}=4.437, 样

品中镉元素的浓度 $C_{0-Cd}=6.343; p$ 为对样品中元素 浓度 C_0 的测定次数, p=5; n 为标准溶液测试次数, $n=18; \overline{C_i}$ 为标准溶液的平均浓度, 砷元素的 $\overline{C_i}=5.107, \sum_{i=1}^{18} (C_i - \overline{C_i})^2 = 258.5, 镉元素的 \overline{C_i}=5.166,$ $\sum_{i=1}^{18} (C_i - \overline{C_i})^2 = 264.5$ 。

表 6 镉标准溶液结果表 Tab.6 Cadmium standard solution results

C_i	Y _i	$a C_i + b$	$[Y_i - (a \ C_i + b)]$	² $C_i - \overline{C_i}$	$(C_i - \overline{C_i})^2$
0.0000	0.0001	0.000037	3.94E-09	-5.1660	26.688
0.0000	0.0000	0.000037	1.39E-09	-5.1660	26.688
0.0000	0.0001	0.000037	3.94E-09	-5.1660	26.688
1.0508	0.0084	0.009705	1.70E-06	-4.1152	16.935
1.0508	0.0102	0.009705	2.45E-07	-4.1152	16.935
1.0508	0.0107	0.009705	9.91E-07	-4.1152	16.935
4.2395	0.0392	0.039041	2.54E-08	-0.9265	0.858
4.2395	0.0405	0.039041	2.13E-06	-0.9265	0.858
4.2395	0.038	0.039041	1.08E-06	-0.9265	0.858
6.4702	0.0567	0.059563	8.20E-06	1.3042	1.701
6.4702	0.0636	0.059563	1.63E-05	1.3042	1.701
6.4702	0.0585	0.059 563	1.13E-06	1.3042	1.701
8.5351	0.0772	0.078 560	1.85E-06	3.3691	11.351
8.5351	0.0788	0.078 560	5.75E-08	3.3691	11.351
8.5351	0.079	0.078 560	1.93E-07	3.3691	11.351
10.702	0.0957	0.098496	7.82E-06	5.5360	30.647
10.702	0.0988	0.098496	9.26E-08	5.5360	30.647
10.702	0.1039	0.098496	2.92E-05	5.5360	30.647

 S_R 的计算如式(2)。

$$S_{R} = \sqrt{\frac{\sum_{i=1}^{n} [Y_{i} - (aC_{i} + b)]^{2}}{n-2}}$$
(2)

砷元素的标准溶液比率残差的标准差 *S*_{*R*-As}= 0.00504; 镉元素的标准溶液比率残差的标准差 *S*_{*R*-Cd}=0.00211。

将各数值代入式(1)得, 砷元素标准曲线拟合 产生的不确定度 u_{As}(C₃)=0.131; 镉元素标准曲线拟 合产生的不确定度 u_{Cd}(C₃)=0.117。

砷元素标准曲线拟合产生的相对不确定度 $u_{rel-As}(C_3) = \frac{u(C_3)}{C_0} = 0.0295;$

镉元素标准曲线拟合产生的相对不确定度 $u_{\text{rel-Cd}}(C_3) = \frac{u(C_3)}{C_0} = 0.0184_{\circ}$ 由此, 被测物浓度 (*C*) 引入的砷、镉相对不确定 度 *u*_{rel-As}(*C*)、*u*_{rel-Cd}(*C*) 分别为:

 $u_{\rm rel-As}(C) = \sqrt{u_{\rm rel}^2(C_1) + u_{\rm rel}^2(C_2) + u_{\rm rel}^2(C_3)} = 0.0297;$ $u_{\rm rel-Cd}(C) = \sqrt{u_{\rm rel}^2(C_1) + u_{\rm rel}^2(C_2) + u_{\rm rel}^2(C_3)} = 0.0188_{\circ}$ **3.2.2** 样品称量引入的相对不确定度 $u_{\rm rel}(m)$

精密称取样品 m_3 (约 0.6g), 质量由 2 次称量所得 (去皮及样品称量), 天平校准证书显示最大允许误差 $\delta_3=0.5$ mg, 按照矩形分布 $k=\sqrt{3}$ 计算, $u_{rel}(m)=$

 $\sqrt{2 \times \left(\frac{\delta_3}{k} \times \frac{1}{m_3 \times 1000}\right)^2} = 0.00068_{\circ}$

3.2.3 样品定容体积引入的相对不确定度 urel(V)

1)样品稀释过程中使用的 25 mL 量具,为 A 级,按照国家计量检定规程 JJG-196-2012 的要求, 其允许偏差为±0.030 mL。按照三角形分布考虑, $k=\sqrt{6}$,由此估算量具引入的相对不确定度分量 $u_{rel}(V_1)=0.00049$ 。

2) 量具校准温度为 20 ℃, 而实验室的温度为 (20±5) ℃, 水的体积膨胀系数为 0.00021 /℃, 按照矩 形分布, 则环境温度引入的相对不确定度 *u*_{rel}(*T*)= 5×0.00021/√3=0.00061。

合成得样品定容体积引入的相对不确定度 $u_{rel}(V)=\sqrt{u_{rel}^2(V_1)+u_{rel}^2(T)}=0.00078_{\circ}$

3.2.4 精密度引入的相对不确定度 urel(rep)

通过试液测量精密度偏差来考察测量过程引入 的不确定度。按照 A 类不确定度评定,则: 由精密度引入的砷元素的相对不确定度 $u_{\text{rel-As}}(rep)=0.0036\times\frac{1}{\sqrt{6}}/0.181=0.0081;$

由精密度引入的镉元素的相对不确定度 $u_{\text{rel-Cd}}(rep)=0.0058\times\frac{1}{\sqrt{6}}/0.267=0.00888$ 。

3.2.5 回收率引入的相对不确定度 urel(R)

常用回收率平均值的标准偏差来评估样品前处 理过程中引入的不确定度 *u*_{rel}(*R*)。

$$u_{\rm rel}(R) = \frac{S_{\rm p}}{\sqrt{n}} \cdot \frac{1}{\sqrt{\overline{R}}} \tag{3}$$

式中, S_p 为回收率的标准偏差; n 为回收率实验测试 次数, n=12; \overline{R} 为回收率的平均值。

按式 (3) 计算,则由回收率引入的砷元素的相 对不确定度 *u*_{rel-As}(*R*)=0.0122;

由回收率引入的镉元素的相对不确定度 *u*_{rel-Cd}(*R*)=0.0225。

3.3 合成相对标准不确定度

合成相对标准不确定度u_{rel}(X) =

 $\sqrt{u_{\rm rel}^2(C) + u_{\rm rel}^2(m) + u_{\rm rel}^2(V) + u_{\rm rel}^2(R) + u_{\rm rel}^2(rep)} \quad (4)$

表 7 为不确定度分量及占比情况。按式 (4) 计 算, 得砷元素的合成相对标准不确定度 *u*_{rel-As}(*X*)= 0.033;

镉元素的合成相对标准不确定度 *u*_{rel-Cd} (*X*)= 0.031。

表 7 不确定度分量及占比 Tab.7 Uncertainty budget

			j			
不确定度分量	丁本台英本派	米刑	数值			
	小佣疋反木你	天堂 -	砷	占比(%)	镉	占比(%)
	标准溶液纯度	В	0.003 5	6.4	0.0035	6.4
$u_{\rm rel}(C)$	标准工作溶液的配制	В	0.000013	0.02	0.000013	0.02
	标准曲线拟合	А	0.0295	53.9	0.0184	33.6
$u_{\rm rel}(m)$	样品	В	0.00068	1.2	0.00068	1.2
$u_{\rm rel}(V)$	样品定容	В	0.00078	1.4	0.00078	1.4
$u_{\rm rel}(rep)$	测量精密度	А	0.0081	14.8	0.0089	16.2
$u_{\rm rel}(R)$	测量回收率	А	0.0122	22.3	0.0225	41.1

3.4 扩展不确定度

采用包含因子 k=2,则扩展不确定度

$$U = u_{\rm rel}(X) \times \overline{X} \times 2 \tag{5}$$

式中, \overline{x} 为样品中元素的实测值,由此得到 ICP-MS 法测定大米粉中砷和镉含量的不确定度结果见表 8。

 Tab.8
 Expanded uncertainty

 项目
 砷结果
 镉结果

表8 扩展不确定度

坝目	仰泊米	捆泊术
实测值X/(mg/kg)	0.182	0.262
合成相对标准不确定度 u _{rel}	0.033	0.031
扩展不确定度 U	0.012	0.016
检测结果(k=2)	0.182 ± 0.012	0.262 ± 0.016

4 结论

对 ICP-MS 法测定大米粉中的砷和镉的测定结 果进行不确定度分析与评估,结果表明,不确定度主 要来源于标准曲线拟合和测量。采用重量法配制标 准工作溶液,能有效避免移液器和容量瓶的量值误 差以及温度波动引起溶液体积变化等因素产生的不 确定度,与容量法相比,引入的不确定度能降低一个 数量级^[8-9],几乎可以忽略。此外,做好仪器的日常 维护、检定和期间核查,确保性能稳定是减小仪器 测量误差的必要措施。

参考文献

- 胡培松. 土壤有毒重金属镉毒害及镉低积累型水稻筛选与改良[J]. 中国稻米, 2004(2): 10-12.
- [2] 吴叶, 王冬月, 孙宏, 等. 苏南农村地区土壤、大米和井水重金 属污染现状 [J]. 现代预防医学, 2016, 43(6): 991-993, 1004.
- [3] 王瑶瑶, 郝毅, 张洪, 等. 珠三角地区大米中的镉砷污染现状 及治理措施 [J]. 中国农学通报, 2019(12): 63-72.
- [4] 秦友燕,何柳莹,蔡江帆,等. 2012 年某地区种植大米重金属
 污染状况 [J]. 中国卫生检验杂志, 2014, 24(13): 1939-1940,
 1944.

- [5] 余江锋. 经济法视角下的食品安全问题: 以"湖南镉大米"事件 为例[J]. 改革与开放, 2013(23): 53-54.
- [6] 毛雪飞,汤晓艳,王艳,等.从"镉大米"事件谈我国种植业产品 重金属污染的来源与防控对策[J].农产品质量与安全, 2013(4): 57-59,73.
- [7] 张梅超, 慕金雨, 王妍, 等. 电感耦合等离子体质谱法测定扇 贝中铅、砷、镉含量的不确定度评定[J]. 食品安全质量检测 学报, 2019(17): 5884-5887.
- [8] 刘锐, 高秀梅, 乔敏莎, 等. ICP-MS 法测定消渴清颗粒原料药 材中 15 种重金属和有害元素及其不确定度评估 [J]. 药物分 析杂志, 2019(4): 685-692.
- [9] 中国合格评定国家认可委员会.化学分析中不确定度的评估 指南: CNAS-GL 006: 2019[S].北京:中国合格评定国家认可 委员会, 2019.
- [10] 秦婷, 苏庆, 邹琴, 等. 微波消解 ICP-MS 法测定化妆品中镉的 不确定度评定 [J]. 计量技术, 2019(2): 14-17.
- [11] 齐越, 綦 峥, 杨 红, 等. 石墨炉-原子吸收光谱法测定大米中镉 的不确定度评定 [J]. 食品安全质量检测学报, 2019(17): 5848-5852.
- [12] 国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中污染物限量:GB 2762-2017[S].北京:中国质检出版社,2017.

本文编辑:高超前

(上接第 21 页)

- [9] 全国电工电子可靠性与维修性标准化技术委员会.可靠性 维修性 术语: GB/T 3187-1994[S]. 北京: 中国标准出版社, 1994.
- [10] 中国人民解放军总装备部电子信息基础部.可靠性维修性保 障性术语: GJB 451A-2005[S].北京:总装备部军标发行出版 部,2005.
- [11] IEC TC1. International electrotechnical vocabulary part 192 Dependability: IEC 60050(192): 2015[S/OL] (2015-02) [2019-05-18]. https://webstore.iec.ch/preview/infoiec60050-192%7Bed 1.0%7Db.pdf.
- [12] United States Department of Defense. Mechanical Equipment and Subsystems Integrity Program: MIL—STD- 1798-88 [S/OL] [2019-05-18].https://systemsengineeringstandardsandspecif.emilspec.com/IL-STD-1798/page17.html.
- [13] ГОСТ ТК119. Надежность в технеке основвые понятия. Термины и Определения: ГОСТ 27.002-89 [S/OL]. [2019-05-18]. http://www.doc88.com/p-6999184761708.html.
- [14] OIML TC1. International vocabulary of terms in legal metrology (VIML): OIML V1: 2013 (E/F) [S/OL]. (2013-12-29) [2019-05-18]. https://www.oiml.org/en/files/pdf_v/v001-ef13.pdf.

- [15] JCGM WG2. International Vocabulary of Metrology Basic and General Concepts and Associated Terms (VIM): OIML V2-200: 2012(E)[S/OL](2012-04-18)[2019-05-18].https://www.oiml.org/ en/files/pdf_v/v002-200-e12.pdf.
- [16] 胡强. 连续累计自动衡器 (皮带秤) 耐久性测评方法研究 [J]. 计量技术, 2018(9): 68-71.
- [17] OIML TC3/SC1. Pattern evaluation and pattern approval: OIMLD19: 1988[S/OL]. (2002-10-31)[2019-05-18]. https://www. oiml.org/en/files/pdf_d/d019-e88.pdf.
- [18] 全国衡器标准化技术委员会. 非自动衡器: G B/T 23111-2008[S]. 北京: 中国标准出版社, 2009.
- [19] 全国衡器标准化技术委员会. 连续累计自动衡器 (皮带秤): G B/T 7721-2017[S]. 北京: 中国标准出版社, 2017.
- [20] 全国衡器计量技术委员会. 连续累计自动衡器 (皮带秤): JJG 195-2002[S]. 北京: 中国计量出版社, 2003.
- [21] National Institute of Standards and Technology. Belt Conveyor Scale Systems//Specifications, Tolerances and Other Technical Requirements for Weighing and Measuring Devices: NIST HB-44[S/OL]. Washington: 2008. [2019-05-18]. https://www.nist.gov/ publications/.