Volume 68 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
MA Juanjuan, XU Aihua, SONG Xiao, WU Jinfeng, ZENG Zhuo. Measurement of Beam Parallelism of Photoelectric Autocollimators Based on a Pentaprism[J]. Metrology Science and Technology, 2024, 68(4): 37-44. doi: 10.12338/j.issn.2096-9015.2023.0275
Citation: MA Juanjuan, XU Aihua, SONG Xiao, WU Jinfeng, ZENG Zhuo. Measurement of Beam Parallelism of Photoelectric Autocollimators Based on a Pentaprism[J]. Metrology Science and Technology, 2024, 68(4): 37-44. doi: 10.12338/j.issn.2096-9015.2023.0275

Measurement of Beam Parallelism of Photoelectric Autocollimators Based on a Pentaprism

doi: 10.12338/j.issn.2096-9015.2023.0275
  • Received Date: 2023-11-14
  • Accepted Date: 2024-03-26
  • Rev Recd Date: 2024-03-11
  • Available Online: 2024-04-17
  • Publish Date: 2024-04-01
  • To precisely measure the beam non-parallelism error of photoelectric autocollimators, a method based on a pentaprism has been proposed in this paper. By using a pentaprism, the measurement optical path can be optimized, thereby reducing the influence of surface shape irregularities of the mirror required in the detection process. The error of the non-parallel beam of the photoelectric autocollimator has been quantitatively analyzed, and different methods of beam parallelism measurement are compared experimentally. The results show that the difference between the pentaprism method and using a mirror with a curvature of less than 5×10−5 m−1 is less than 0.1″, which is far superior to the traditional measurement method using a mirror with average flatness. Moreover, the repeatability of the pentaprism method can reach 0.1″. The pentaprism method reduces the system error and improves the measurement accuracy of the beam parallelism of the photoelectric autocollimator.
  • loading
  • [1]
    陈颖, 张学典, 逯兴莲, 等. 自准直仪的现状与发展趋势[J]. 光机电信息, 2011, 28(1): 6-9.
    [2]
    王韵竹. 光电自准直仪光学系统设计与技术研究[D]. 成都: 电子科技大学, 2020.
    [3]
    Pelle N, Ehinger L, Zaug C R, et al. An autocollimator with sub-microradian sensitivity[J]. American Journal of Physics, 2020, 88(7): 586-591. doi: 10.1119/10.0001269
    [4]
    杜明鑫, 闫钰锋, 张燃, 等. 基于透镜阵列的三维姿态角度测量[J]. 中国光学, 2022, 15(1): 45-55.
    [5]
    张欣婷. 高精度光电自准直仪的研究[D]. 长春: 长春理工大学, 2010.
    [6]
    刘智颖, 郑秋水, 李文博, 等. 倾斜分束片型复色自准直仪光学系统[J]. 光学精密工程, 2021, 29(4): 682-690. doi: 10.37188/OPE.2020.0540
    [7]
    杨占立, 范百兴, 西勤, 等. 一种光电自准直仪空间坐标系建立方法研究[J]. 计量学报, 2018, 39(1): 12-14. doi: 10.3969/j.issn.1000-1158.2018.01.03
    [8]
    邹九贵. 高精度CCD二维自准直仪研制[D]. 合肥: 合肥工业大学, 2005.
    [9]
    王志臣, 陈涛, 曹玉岩, 等. 大口径望远镜中间体拓扑优化及形位公差检测[J]. 光学精密工程, 2022, 30(23): 3039-3044.
    [10]
    王晔, 于建楠, 周志炜. 二维光电自准直仪中分划板研究[J]. 传感器与微系统, 2016, 35(12): 24-29.
    [11]
    罗敬, 张晓辉, 何煦, 等. 自准直仪光电探测器失调对测角的影响[J]. 中国光学, 2020, 13(3): 558-567.
    [12]
    李小明, 朱国帅, 郭名航, 等. 基于光学自准直的旋转轴平行度测量与不确定度分析[J]. 红外与激光工程, 2023, 52(5): 304-315.
    [13]
    高松涛, 武东城, 苗二龙. 大偏离度非球面检测畸变校正方法[J]. 中国光学, 2017, 10(3): 383-390.
    [14]
    温彬, 李永亮, 曾佑洪, 等. 便携式红外瞄准镜瞄准基线检测系统研究[J]. 激光与红外, 2010, 40(12): 1330-1332. doi: 10.3969/j.issn.1001-5078.2010.12.012
    [15]
    王洪君. 基于数字图像处理的透镜中心偏测量研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [16]
    朱凡, 李颖先, 谭久彬. 高精度激光光束准直系统设计[J]. 光学精密工程, 2020, 28(4): 817-826.
    [17]
    安正杰. 高精度二维自准直仪研究[D]. 武汉: 华中科技大学, 2020.
    [18]
    杜娟, 郑喆, 王世锋, 等. 激光自准直仪小型化光机结构设计[J]. 长春理工大学学报:自然科学版, 2015, 38(6): 1-4.
    [19]
    闫亚东, 何俊华, 仓玉萍, 等. 用ZEMAX模拟五棱镜误差对平行度检测的影响[J]. 应用光学, 2007, 28(5): 649-653. doi: 10.3969/j.issn.1002-2082.2007.05.027
    [20]
    张冬. 基于PSD的光电自准直仪的研究[D]. 长春: 长春理工大学, 2014.
    [21]
    Wang F, Zhang Z Y, Wang R Q, et al. Distortion measurement of optical system using phase diffractive beam splitter[J]. Optics express, 2019, 27(21): 29803-29816. doi: 10.1364/OE.27.029803
    [22]
    雷震. 红外系统光束平行性检测方法的研究[D]. 西安: 西安工业大学, 2016.
    [23]
    Lu Z G , Lin S , Zheng T , et al. Measuring Parallelism for Two Thin Parallel Beams Based on Autocollimation Principle[J]. Key Engineering Materials, 2014, 613: 157-166.
    [24]
    国家质量监督检验检疫总局. 自准直仪: JJG 202—2007[S]. 北京: 中国标准出版社, 2007.
    [25]
    赵玉平, 彭川黔, 王劼. 大口径细光束自准直测量系统的误差源分析[J]. 半导体光电, 2018, 39(3): 414-419.
    [26]
    闫亚东, 董晓娜, 何俊华, 等. 单星模拟器的调校准确度分析[J]. 光子学报, 2007, 36(9): 1742-1746.
    [27]
    孙一书. 光学系统畸变精密测量技术研究[D]. 长春: 吉林大学, 2019.
    [28]
    温中凯, 雷文平, 黄颖. 五棱镜垂直度误差对转向角的影响分析[J]. 航天返回与遥感, 2019, 40(1): 59-65.
    [29]
    Geckeler R D. Optimal use of pentaprisms in highly accurate deflectometric scanning[J]. Measurement Science & Technology, 2007, 18(1): 115-125.
    [30]
    袁理, 张晓辉, 韩冰, 等. 五棱镜转动时出射光角度的变化[J]. 中国光学, 2015, 8(6): 1036-1043.
    [31]
    张帅, 侯溪. K-B镜面形高精度检测技术研究进展[J]. 中国光学, 2020, 13(4): 660-675.
    [32]
    戚二辉, 罗霄, 李明, 等. 五棱镜扫描技术检测大口径平面镜的误差分析[J]. 红外与激光工程, 2015, 44(2): 639-646. doi: 10.3969/j.issn.1007-2276.2015.02.044
    [33]
    袁理, 张晓辉. 采用五棱镜扫描法检测大口径平面镜的面形[J]. 中国光学, 2019, 12(4): 921-932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (128) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return