Volume 68 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
SONG Huixu, JIANG Jinzhe, SHI Zhaoyao, YU Bo. High-Precision Measurement Method for Micro Gears Based on White Light Interferometry[J]. Metrology Science and Technology, 2024, 68(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0352
Citation: SONG Huixu, JIANG Jinzhe, SHI Zhaoyao, YU Bo. High-Precision Measurement Method for Micro Gears Based on White Light Interferometry[J]. Metrology Science and Technology, 2024, 68(4): 3-10. doi: 10.12338/j.issn.2096-9015.2023.0352

High-Precision Measurement Method for Micro Gears Based on White Light Interferometry

doi: 10.12338/j.issn.2096-9015.2023.0352
  • Received Date: 2023-12-15
  • Accepted Date: 2023-12-26
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-04-12
  • Publish Date: 2024-04-01
  • Accurate acquisition of the physical quantities to be measured is a prerequisite for achieving precise measurements. Currently, high-precision and expensive CNC gear measuring instruments are widely used. However, for micro gears with a modulus less than 0.1 mm and a diameter less than 1 mm, traditional contact measurement methods cannot measure the complete tooth profile due to the narrow tooth groove width. Optical measurement methods also face the problem of not being able to obtain tooth root data due to tooth occlusion and tooth surface inclination limitations. In response to this situation, a high-precision measurement method for micro gears based on white light interferometry is proposed. Real-time monitoring of the micro gear end face tilt is achieved based on the appearance order of interference patterns, ensuring the extraction accuracy of the gear profile. The gear center is determined based on the three-dimensional point cloud data of the end face, effectively improving the gear centering accuracy. The white light interferometry measurement principle for micro gears, the end face leveling model, and the gear error calculation method are introduced in detail. Experimental results show that this method can achieve high-precision measurement of micro gears, providing an effective means to solve the precision measurement problem of micro gears.
  • loading
  • [1]
    尹海清, 杜美娜, 曲选辉, 等. 金属微型元器件的制备与性能检测[J]. 北京科技大学学报, 2008, 30(12): 1428-1431.
    叶汉龙, 程继贵, 陈鹏起. 粉末冶金齿轮模具齿形的精确设计[J]. 粉末冶金工业, 2021, 31(1): 28-33.
    谭兆强, Ulf Engström, 苏鹏飞, 等. 高性能粉末冶金材料发展及其解决方案[J]. 粉末冶金工业, 2020, 30(3): 1-8.
    石照耀. 小模数齿轮行业发展的希望在创新[N]. 中国工业报, 2015-1-22(B02).
    石照耀, 于渤, 宋辉旭, 等. 20年来齿轮测量技术的发展[J]. 中国机械工程, 2022, 33(9): 1009-1024.
    石照耀, 张万年, 曲宏芬. 小模数齿轮单面啮合测量机的研制[J]. 仪器仪表学报. 2011(4): 913-919.
    石照耀, 张万年, 林家春. 小模数齿轮测量: 现状与趋势[J]. 北京工业大学学报, 2008(2): 113-119.
    欧阳志喜, 石照耀. 塑料齿轮设计与制造[M]. 北京: 化学工业出版社, 2011: 271-298.
    石照耀, 曲宏芬, 张万年. 小模数齿轮单面啮合测量仪的设计[J]. 北京工业大学学报, 2011, 37(4): 481-486.
    刘洋,李建双,赫明钊,等. 大尺寸计量中双光梳绝对测距方法的研究进展[J]. 计量科学与技术, 2023, 67(4): 18-27.
    Gao W. Micro-gear measuring machine[M]. Oxford, Elsevier, 2021: 189-224.
    廖世鹏, 廖俊必, 邓雪漫, 等. 直齿渐开线小模数齿轮 (m<1.0) 齿形误差的三坐标图像测量法[J]. 四川大学学报:工程科学版, 2007, 39(4): 164-168.
    Lanza G, Viering B. A novel standard for the experimental estimation of the uncertainty of measurement for micro gear measurements[J]. CIRP annals, 2011, 60(1): 543-546. doi: 10.1016/j.cirp.2011.03.062
    Jantzen S, Neugebauer M, Mee R, et al. Novel measurement standard for internal involute microgears with modules down to 0.1 mm[J]. Measurement Science and Technology, 2018, 29(12): 125012. doi: 10.1088/1361-6501/aae6f4
    Teir L, Lindstedt T, Widmaier T, et al. In-line measurement of the surface texture of rolls using long slender piezoresistive microprobes[J]. Sensors, 2021, 21(17): 5955. doi: 10.3390/s21175955
    Feng X Y, Xu P, Li R J, et al. Development of a high-resolution touch trigger probe based on an optical lever for measuring micro components[J]. IEEE Sensors Journal, 2022, 22(7): 6466-6475. doi: 10.1109/JSEN.2022.3155636
    Ferreira N, Brennecke A, Dietzel A, et al. Reducing the probe ball diameters of 3D silicon-based microprobes for dimensional metrology[C]. 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013.
    Metz D, Ferreira N, Chaillot J, et al. Integration of a piezoresistive microprobe into a commercial gear measuring instrument[J]. Precision Engineering, 2019, 55: 349-360. doi: 10.1016/j.precisioneng.2018.10.003
    Ferreira N, Krah T, Jeong D, et al. Integration of a silicon-based microprobe into a gear measuring instrument for accurate measurement of micro gears[J]. Measurement Science & Technology, 2014, 25(6): 064016.
    Metz D, Jantzen S, Stein M, et al. Microprobe with 3D orthogonal kinematics for dimensional measurement of industrial microparts[C]. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019.
    Metz D, Jantzen S, Wessel D, et al. Integration of an isotropic microprobe and a microenvironment into a conventional CMM[J]. Measurement Science and Technology, 2019, 30(11): 115007. doi: 10.1088/1361-6501/ab2fda
    Metz D, Dietzel A. New parallelogram 3D-displacement sensor for micro probing and dimensional metrology[C]. 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017.
    Gołębski R, Boral P. Study of machining of gears with regular and modified outline using CNC machine tools[J]. Materials, 2021, 14(11): 2913. doi: 10.3390/ma14112913
    Stephan J, Martin S, Andreas D, et al. Microgear Measurement Standards-Comparing Tactile, Optical and Computed Tomography Measurements[J]. Gear Technology, 2019(8): 52-63.
    刘明佩, 朱维斌, 叶树亮. 基于改进 Zernike 矩的小模数齿轮亚像素边缘检测[J]. 仪器仪表学报, 2018, 39(8): 259-267.
    朱维斌, 刘明佩, 叶树亮. 基于邻域特性分析的小模数齿轮亚像素图像边缘检测[J]. 仪器仪表学报, 2018(3): 148-156.
    汤洁, 刘小兵, 李睿. 未知参数小模数齿轮齿距和齿廓偏差视觉测量[J]. Optics and Precision Engineering, 2021, 29(1): 100-109.
    支珊, 赵文珍, 段振云, 等. 视觉测量齿轮定位偏心对齿距测量精度的影响[J]. 仪器仪表学报, 2019(2): 205-212.
    Thian S C H, Feng W, Wong Y S, et al. Dimensional measurement of 3D microstruture based on white light interferometer[C]. Journal of Physics: Conference Series. IOP Publishing, 2007.
    石照耀, 姜海洋, 张敏. 产品几何规范中非理想表面的多尺度表征[J]. 光学精密工程, 2016, 24(7): 1647-1654.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (223) PDF downloads(40) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint