Volume 68 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZENG Lin, ZHOU Siqing, CHEN Yuefei. Research on the Measurement Value Correction Model of Liquid-Medium Piston Gauges[J]. Metrology Science and Technology, 2024, 68(4): 66-70, 10. doi: 10.12338/j.issn.2096-9015.2024.0024
Citation: ZENG Lin, ZHOU Siqing, CHEN Yuefei. Research on the Measurement Value Correction Model of Liquid-Medium Piston Gauges[J]. Metrology Science and Technology, 2024, 68(4): 66-70, 10. doi: 10.12338/j.issn.2096-9015.2024.0024

Research on the Measurement Value Correction Model of Liquid-Medium Piston Gauges

doi: 10.12338/j.issn.2096-9015.2024.0024
  • Received Date: 2024-01-24
  • Accepted Date: 2024-01-25
  • Rev Recd Date: 2024-02-21
  • Available Online: 2024-04-01
  • Publish Date: 2024-04-01
  • The mass of the special small weights used in liquid-medium piston gauges is calculated with reference to the effective area of the zero-pressure piston, while the mass of the large weights only considers the deformation of the piston system caused by loading the large weights. As a result, the actual pressure measured by the piston gauge loaded with nominal pressure weights is less than the nominal pressure. Based on the basic principles of piston pressure gauges, a measurement value correction model for liquid-medium piston gauges with a measurement upper limit of 25 MPa and above is derived. The results of the relative pressure correction values for piston gauges with upper measurement limits of 60 MPa and 250 MPa show that the absolute value of the relative pressure correction value increases nearly linearly with the number of small weights loaded but exhibits a nonlinear increase with a gradually weakening trend as the number of large weights loaded increases. The limit value of the relative pressure correction value is proportional to the pressure deformation coefficient and the upper measurement limit of the piston gauge. Overall, the influence of small weights on the relative pressure correction value is greater than that of large weights, and the relative pressure correction value reaches an extreme value at the pressure measurement point with the largest number of small weights loaded near the upper limit of the piston measurement. The relative pressure correction limit of the 250 MPa piston is −5.17×10−5, exceeding the maximum allowable error of the 0.005-level piston gauge. Based on the limitation of the maximum tolerance of the special weight mass, the output measurement values of 25 MPa piston gauges of grade 0.01 and above and 250 MPa piston gauges of grade 0.02 and above must be corrected to ensure the accuracy of their pressure value transmission.
  • loading
  • [1]
    曾麟, 周四清, 龙彦韬. 基于等质量增量法的活塞式压力计活塞有效面积校准方法研究[J]. 计量技术, 2019(8): 14-17.
    [2]
    王琛, 刘环宇, 杨远超, 等. 500MPa活塞式压力计活塞系统关键参数设计[J]. 计量学报, 2021, 42(12): 1625-1629.
    [3]
    悦进, 杨远超. 10 kPa气体活塞式压力计计量性能测试研究[J]. 计量学报, 2022, 43(4): 507-512.
    [4]
    张福兴, 刘志磊, 卜繁岭, 等. EPSO优化的LQR活塞压力计的控制器设计[J]. 大连工业大学学报, 2023, 42(5): 371-377.
    [5]
    盛以唐, 黄国政, 韩慧文, 等. 20~100MPa压力量值国际比对[J]. 计量学报, 1988(2): 88-94.
    [6]
    杨远超. 活塞压力计自动化校准方法研究[J]. 计量学报, 2017, 38(6): 708-712.
    [7]
    甘蓉, 尹保来, 罗凡, 等. 活塞式压力计活塞有效面积测量方法[J]. 中国测试, 2021, 47(12): 34-38.
    [8]
    顾世杰, 王鲁, 刘鉴学, 等. 1500MPa可控间隙活塞式压力计研究[J]. 计量学报, 2008(1): 54-59.
    [9]
    盛以唐. 活塞式压力计有效面积的研究及其在基准器上的应用[J]. 计量学报, 1982(3): 161-174.
    [10]
    张国春, 李燕华, 闫小克, 等. 活塞压力计稳定性研究[J]. 计量技术, 2007(12): 40-43.
    [11]
    YUE A S, WLADIMIR. Characterization of the new 1 GPa piston-cylinder assembly of PTB[J]. Measurement, 2019, 1: 134.
    [12]
    曾麟, 杨远超, 悦进, 等. 气体活塞式压力计基准量值传递自动化研究 [J]. 计量学报, 2021, 42(10): 1316: 1322.
    [13]
    周宇仁, 刘燚, 蒋厚庸, 等. 活塞式压力计新旧规程对面积测量的研究[J]. 中国仪器仪表, 2023(9): 60-64.
    [14]
    刘朝彤, 刘素芳, 郭建成. 应用比例阀实现压力变化率的控制设计[J]. 计量科学与技术, 2020(12): 73-76.
    [15]
    MICHAEL, BAIR, WLADIMIR, et al. Design and Evaluation of Pressure Balances with 1 (centre dot) 10~(-6) Uncertainty for the Boltzmann Constant Project[J]. PTB Mitteilungen, 2011, 121(3): 256-259.
    [16]
    W SABUGA. Pressure measurements in gas media up to 7.5 MPa for the Boltzmann constant redetermination[J]. PTB Mitteilungen, 2011, 121(3): 247-255.
    [17]
    YANG Y, R GREGORYQUINTAVALLE, JOHN S SCHERSCHLIGT, et al. An integrated and automated calibration system for pneumatic piston gauges[J]. Measurement, 2019, 2: 134.
    [18]
    KOBATA T, OLSON D A. Accurate determination of equilibrium state between two pressure balances using a pressure transducer[J]. Metrologia, 2003, 42(6): S231.
    [19]
    KOBATA T. Precise Comparison between Gas and Hydraulic Pressure Balances[J]. Transactions of the Society of Instrument & Control Engineers, 2013, 43(1): 9-16.
    [20]
    张忠立, 王灿, 林正皓, 等. 基于双向流固耦合技术的活塞式压力计研究[J]. 计量学报, 2021, 42(3): 276-281.
    [21]
    孙晓全, 周光, 岑月琴. 活塞压力计压力形变系数的理论分析[J]. 中国测试, 2020, 46(9): 13-18.
    [22]
    蔡庆, 悦进. 气体活塞式压力计与液体活塞式压力计的差异[J]. 计测技术, 2012, 32(S1): 67-68,77.
    [23]
    常萱, 邓云. 检定数字压力计影响测量结果因素的探讨[J]. 计量技术, 2014(2): 57-58.
    [24]
    陈俊. 高准确度数字压力计的校准及测量结果的不确定度分析[J]. 工业计量, 2019, 29(3): 53-54,60.
    [25]
    李建英, 贺晓雷, 于贺军, 等. 空气密度对PG7607活塞压力计测量结果的影响[J]. 气象, 2011, 37(5): 622-625.
    [26]
    李鑫武, 盛晓岩, 张贤, 等. 测量气体活塞式压力计有效面积时气柱差的误差分析[J]. 计测技术, 2008(4): 38-40.
    [27]
    张强, 何亚洲, 彭刚, 等. 0.01级数字压力计比对分析[J]. 计量技术, 2018(1): 56-58.
    [28]
    张宋强, 宋长亮. 重力加速度对活塞式压力计准确性的影响[J]. 中国计量, 2009(4): 63-64.
    [29]
    张挺, 李红志, 兰卉, 等. 海洋专用高精度压力传感器温度特性及补偿算法研究[J]. 海洋技术学报, 2016, 35(6): 36-40.
    [30]
    张贤. 影响压力测量审核结果的因素分析[J]. 计测技术, 2014, 34(3): 86-87,90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (132) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return