Preparation Process and Uniformity Analysis of a PET/CT Medical 68Ge-68Ga Phantom
-
摘要: 68Ge-68Ga模体主要用于PET/CT图像均匀性的调节以及SUV值的校正。为了实现该模体的国产化,本文采用改性后的环氧树脂为填充基质,通过载体溶液模拟68Ge-68Ga放射性溶液。将载体溶液、树脂以及固化剂混匀后的物料浇注在高密度聚乙烯(HDPE)外壳中,然后在物料完全固化后制成质地坚硬、色泽通透、无气泡的非放模体。使用电感耦合等离子体发射光谱仪(ICP-OES)检测该模体中Ge、Ga元素浓度,均匀性分析结果显示该模体中Ge、Ga浓度分布差异性不显著,相对标准偏差分别为2.20%、3.65%,与国外同类产品水平相当。表明文中所述工艺可用于68Ge-68Ga模体的制备。Abstract: 68Ge-68Ga phantoms are mainly used in PET/CT image uniformity adjustment and SUV value correction. In order to produce a 68Ge-68Ga phantom, an epoxy resin modified by polysulfide rubber was used as the substrate and the carrier solution of 68Ge-68Ga was used to simulate 68Ge-68Ga radioactive solution. The homogeneous mixture of carrier solution, epoxy resin, and curing agent was filled in a shell of high density polyethylene (HDPE). After the mixture was solidified completely, a non-radioactive phantom with hard texture, color transparent and non-bubble was prepared. Inductively coupled plasma-optical emission spectrometer (ICP-OES) was used to detect the concentration of Ge and Ga elements in the phantom. The results of uniformity analysis showed that there was no significant difference in the concentration distribution of Ge and Ga in the phantom, and the relative standard deviations were 2.20% and 3.65%, respectively, which were equivalent to similar imported products. It was indicated that the process described in this paper can be used for the preparation of 68Ge-68Ga phantom.
-
Key words:
- phantom /
- PET/CT /
- carrier solution /
- epoxy resin /
- uniformity
-
表 1 主要试剂和仪器
Table 1. Main reagents and instruments
名称 厂家 纯度/型号 试剂 环氧树脂 深圳聚恒创电子材料公司 — 固化剂 深圳聚恒创电子材料公司 — 聚硫橡胶 武汉卡步达化工公司 — 盐酸 北京化工厂 分析纯 GeCl4 美国Acros Oranics公司 99.99% GaCl3 美国Alfa Aesar公司 99.99% 仪器 电子天平 德国Sartorius公司 R200D ICP-OES 美国赛默飞公司 ICAP7000 工业CT 美国北极星公司 X5000 表 2 载体溶液中Ge、Ga元素浓度
Table 2. Concentration of Ge and Ga in the carrier solution
样品编号 浓度(μg·g−1) 1 2 3 4 5 锗 A 26.0 25.9 26.1 26.2 25.8 B 25.7 26.0 26.3 26.4 26.5 镓 A 29.5 29.6 29.5 29.5 29.2 B 28.9 29.3 29.7 29.8 30.1 表 3 单因素方差分析结果
Table 3. Results of one-factor analysis of variance
元素 差异源 SS MS F P F crit 锗 组间 0.003 0.001 0.894 0.530 5.192 组内 0.004 0.001 总计 0.006 镓 组间 0.004 0.001 0.678 0.636 5.192 组内 0.007 0.001 总计 0.011 表 4 非放模体中Ge、Ga元素浓度
Table 4. Concentration of Ge and Ga in the non-radioactuve phantom
样品编号 浓度(μg·g−1) 6 7 8 9 10 锗 A 0.224 0.236 0.218 0.223 0.208 B 0.194 0.202 0.225 0.212 0.220 镓 A 0.242 0.240 0.217 0.224 0.237 B 0.220 0.236 0.216 0.219 0.222 表 5 非放模体均匀性分析
Table 5. Uniformity analysis of the non-radioactuve phantom
项目 元素 项目 元素 锗 镓 锗 镓 $\overline{\overline x} $ 0.227 0.216 $ s_2^2$ 7.73×10−5 2.39×10−4 N 10.0 10.0 F 1.78 0.190 Q1 5.51×10−4 1.81×10−4 Fα 15.6 15.6 Q2 3.86×10−4 1.20×10−3 $s_H^2 $ 1.07×10−4 1.42×10−4 v1 4.00 4.00 sH 8.79×10−3 1.19×10−2 v2 5.00 5.00 s2 1.04×10−2 1.55×10−2 $ s_1^2 $ 1.38×10−4 4.53×10−5 RSD 2.20% 3.65% -
[1] D'Angelo E C, Paolisso P, Vitale G, et al. Diagnostic Accuracy of Cardiac Computed Tomography and 18F-Fluorodeoxyglucose With Positron Emission Tomography in Cardiac Masses[J]. JACC: Cardiovascular imaging, 2020, 13(11): 2400-2411. doi: 10.1016/j.jcmg.2020.03.021 [2] Blodgett T M, Meltzer C C, Townsend D W. PET/CT: form and function[J]. Radiology, 2007, 242(2): 360-385. doi: 10.1148/radiol.2422051113 [3] Maurer A H. Combined imaging modalities: PET/CT and SPECT/CT[J]. Health physics, 2008, 95(5): 571-576. doi: 10.1097/01.HP.0000334064.46217.20 [4] Kim Y, Cho K G, Jang S J. Comparison of dual-time point 18F-FDG PET/CT tumor-to-background ratio, intraoperative 5-aminolevulinic acid fluorescence scale, and Ki-67 index in high-grade glioma[J]. Medicine, 2019, 98(8): 14397-14402. doi: 10.1097/MD.0000000000014397 [5] Zhang W S, Ning N, Li X J, et al. Impaired brain glucose metabolism in cirrhosis without overt hepatic encephalopathy: a retrospective 18F-FDG PET/CT study[J]. NeuroReport, 2019, 30(11): 776-782. doi: 10.1097/WNR.0000000000001284 [6] Salmon E, Bernard I C, Hustinx R. Pitfalls and Limitations of PET/CT in Brain Imaging[J]. Seminars in Nuclear Medicine, 2015, 45(6): 541-551. doi: 10.1053/j.semnuclmed.2015.03.008 [7] Chuang H H, Emery D J, Campbell R M, et al. FDG PET/CT in Diagnosing COVID-19 Infection in a Cancer Patient with Exposure History but Minimal Symptoms[J]. Clinical Nuclear Medicine, 2020, 45(8): 656-658. doi: 10.1097/RLU.0000000000003137 [8] 钱根年, 陈自谦, 钟群, 等. PET/CT成像系统的质量控制[J]. 中国医疗设备, 2019, 34(2): 1-4. doi: 10.3969/j.issn.1674-1633.2019.02.001 [9] 耿建华, 陈英茂, 田嘉禾, 等. 校正PET图像上病灶SUV值的研究[J]. 核电子学和探测技术, 2009, 29(4): 925-929. [10] 万良荣, 黄钢, 孙晓光, 等. PET/CT的质量控制和日常维护[J]. 上海第二医科大学学报, 2005, 25(12): 1303-1305. [11] Zimmerman B E, Cessna J T. Development of a traceable calibration methodology for solid 68Ge/68Ga sources used as a calibration surrogate for 18F in radionuclide activity calibrators[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2010, 51(3): 448-453. [12] Hasford F, Wyk B V, Mabhengu T, et al. Effect of Radionuclide Activity Concentration on PET-CT Image Uniformity[J]. World Journal of Nuclear Medicine, 2016, 15(2): 91-95. doi: 10.4103/1450-1147.167578 [13] Zimmerman B E, Bergeron D E, Cessna J T. Impact of Recent Change in the National Institute of Standards and Technology Standard for 18F on the Relative Response of 68Ge-Based Mock Syringe Dose Calibrator Standards[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2015, 56(9): 1453-1457. [14] 傅红宇, 罗文博, 李光, 等. 68Ge校正源的制备工艺[J]. 核化学与放射化学, 2013, 35(6): 375-378. [15] Zimmerman B E, Bergeron D E, Fitzgerald R, et al. Long-term stability of carrier-added Ge-68 standardized solutions[J]. Applied Radiation & Isotopes, 2016(109): 214-216. [16] 王少龙, 柳亚斌, 王瑞山, 等. 二氧化锗离心过滤工艺研究[J]. 稀有金属材料与工程, 2015, 44(8): 1994-1998. [17] 欧阳游, 梁永顺, 唐晓川, 等. 应用方差分析法检验γ测井模型的均匀性[J]. 宇航计测技术, 2018, 38(5): 91-95.