Volume 65 Issue 5
Jun.  2021
Turn off MathJax
Article Contents
HU Hongbo, LIU Aidong, ZUO Aibin, YANG Lifeng. Bayesian Uncertainty Evaluation for Accelerometer Calibration[J]. Metrology Science and Technology, 2021, 65(5): 101-107, 61. doi: 10.12338/j.issn.2096-9015.2020.9051
Citation: HU Hongbo, LIU Aidong, ZUO Aibin, YANG Lifeng. Bayesian Uncertainty Evaluation for Accelerometer Calibration[J]. Metrology Science and Technology, 2021, 65(5): 101-107, 61. doi: 10.12338/j.issn.2096-9015.2020.9051

Bayesian Uncertainty Evaluation for Accelerometer Calibration

doi: 10.12338/j.issn.2096-9015.2020.9051
  • Available Online: 2021-05-17
  • Publish Date: 2021-06-24
  • In this paper, Bayesian statistics is applied for the uncertainty evaluation of accelerometer calibration results. The process of analyzing measurement uncertainty based on GUM, GUM S1, and Bayesian statistics for linear measurement models is first presented to illustrate the differences in the analysis of the three methods. Combined with the vibration and shock calibration accelerometer data in actual work, the Bayesian statistics and GUM series methods with different prior distributions were used to analyze and compare the results. For the estimation of the reference value and its uncertainty for the key comparison in the field of shock acceleration, two different statistical models were developed using the Bayesian unpooled method and numerical method, on which the reference values and the corresponding uncertainties were calculated in combination with the Markov chain Monte Carlo method (MCMC) comparison, and the results were compared with those of the general method. The advantages and disadvantages of Bayesian statistics for uncertainty assessment are illustrated by the consistency and variability of the results obtained by the different methods.
  • loading
  • [1]
    BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML. Guide to the Expression of Uncertainty in Measurement[S]. International Organization for Standardization, Geneva, Switzerland, 2008.
    [2]
    A B Forbes, J A Sousa. The GUM, Bayesian inference and the observation and measurement equations[J]. Measurement, 2011, 44(8): 1422-1435. doi: 10.1016/j.measurement.2011.05.007
    [3]
    R Kacker, A Jones. On use of Bayesian statistics to make the Guide of the Expression of Uncertainty in Measurement consistent[J]. Metrologia, 2003, 40(5): 235-248. doi: 10.1088/0026-1394/40/5/305
    [4]
    胡红波, 孙桥, 杜磊, 等. GUM与基于观测方程的测量不确定度评估[J]. 计量学报, 2017, 38(5): 656-660. doi: 10.3969/j.issn.1000-1158.2017.05.29
    [5]
    I Lira, D Grientschnig. Equivalence of alternative Bayesian procedures for evaluating measurement uncertainty[J]. Metrologia, 2010, 47(3): 334-336. doi: 10.1088/0026-1394/47/3/025
    [6]
    姜瑞. 现代不确定度评定方法及应用[D]. 合肥: 合肥工业大学, 2017.
    [7]
    薄晓静, 陈晓怀. 基于贝叶斯理论的测量不确定度A类评定[J]. 工业计量, 2014, 14(4): 15-16. doi: 10.3969/j.issn.1002-1183.2014.04.005
    [8]
    胡红波, 孙桥, 杜磊, 等. GUM S1与基于贝叶斯方法的不确定度评估比较[J]. 计量学报, 2017, 38(4): 517-520. doi: 10.3969/j.issn.1000-1158.2017.04.28
    [9]
    Katy Klauenberg, Gerd Wübbeler, Bodo Mickan, et al. A tutorial on Bayesian Normal linear regression[J]. Metrologia, 2015, 52(6): 878-892. doi: 10.1088/0026-1394/52/6/878
    [10]
    I Lira, D Grientschnig. Bayesian assessment of uncertainty in metrology: a tutorial[J]. Metrologia, 2010, 47(3): R1-R14. doi: 10.1088/0026-1394/47/3/R01
    [11]
    Clemens Elster, Wolfgang Wöger, Maurice G Cox. Draft GUM Supplement 1 and Bayesian analysis[J]. Metrologia, 2007, 44(3): L31-L32. doi: 10.1088/0026-1394/44/3/N03
    [12]
    韦来生, 张伟平. 贝叶斯分析[M]. 合肥: 中国科学技术大学出版社, 2013: 65-74.
    [13]
    Andrew Gelman, John B. Carlin, Hal S. Stern, et al. Bayesian data analysis[M]. New York: CRC Press, 2014: 141-153.
    [14]
    胡红波. MCMC方法在测量不确定度评估中的应用[J]. 计量技术, 2020(5): 89-94. doi: 10.3969/j.issn.1000-0771.2020.05.18
    [15]
    胡红波, 孙桥, 白杰. 基于相关分析法的绝对法振动校准技术的研究与试验[J]. 测试技术学报, 2013, 27(5): 384-389. doi: 10.3969/j.issn.1671-7449.2013.05.003
    [16]
    Sun Qiao, HU Hongbo, Akihiro Ota, et al. Key comparison in the field of acceleration on low intensity shock sensitivity[J]. Metrologia, 2019, 56(1A): 09003. doi: 10.1088/0026-1394/56/1A/09003
    [17]
    M G Cox. The evaluation of key comparison data: An introduction[J]. Metrologia, 2002, 39(6): 589-595. doi: 10.1088/0026-1394/39/6/10
    [18]
    胡红波, 孙桥. 二阶线性时不变系统动态特性的补偿与动态不确定度评估[J]. 计量学报, 2013, 34(2): 106-110. doi: 10.3969/j.issn.1000-1158.2013.02.03
    [19]
    Walter Bich, Maurice Cox, Carine Michotte. Towards a new GUM – an update[J]. Metrologia, 2016, 53(5): S149-S159. doi: 10.1088/0026-1394/53/5/S149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (89) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return