Abstract:
Cold-atom systems provide a nearly static measurement medium with almost no interaction between the atoms for quantum precision measurement processes, thereby avoiding the frequency shift and broadening existing in the working medium of hot atoms, making the measurement results more accurate. However, the atomic cooling part of current quantum precision measurement systems is bulky and complex, which is not conducive to miniaturization of distributable quantum measurement standard systems. In order to make a less complex magneto-optical trap system, we adopted the scheme to combine the diffraction grating chip and the atomic cooling technique. The wavefront of a single incident light was phase modulated through the linear grating, and the atoms were successfully trapped on a chip scale. The preparation of the core chip of a miniaturized magneto-optical trap and the realization of the magneto-optical trap system with a simple optical structure can lay a solid foundation for further miniaturization of the overall system of a magneto-optical trap in the future.