Abstract:
Pump-driven loop heat pipe energy recovery device is an air conditioning energy recovery device, which integrates the advantages of intermediate heat medium and loop heat pipe heat exchangers and is suitable for complex pipeline layouts. In order to study the performance of the device, an experimental system for the pump-driven loop heat pipe energy recovery device was set up, and three performance evaluation coefficients, heat exchange, temperature efficiency, and performance coefficient were proposed, and the effects of four factors on the performance of the device, including temperature difference Δ
T, mass flow rate
m, heat exchange area
A,
and working medium, were considered. By testing the values of heat exchange, temperature efficiency, performance coefficient under different temperature differences, mass flow rate, and exchange area, the relationship between them and optimal operation scheme were obtained, which provided guidance and reference for the design and operation of such devices.