激光陀螺测角仪的校准与计量方法

    Calibration and Measurement Method of Laser Gyro Goniometer

    • 摘要: 激光陀螺由于零位漂移、溯源等问题导致其无法成为计量标准器,为充分发挥其优越的高精度测角性能,详细介绍了其在计量领域应用,重新定义了更能直观表征激光陀螺测角仪的性能参数,给出了与激光陀螺中“标度因数”、“零漂”相对应的“刻度系数”和“偏置”的定义,通过实验测试了激光陀螺测角仪的刻度系数非线性度、稳定性以及刻度系数温度灵敏度、偏置重复性和偏置温度灵敏度等性能参数,给出了适用于激光陀螺测角仪的校准方法。最后提出了一种去除线性误差的方法,解决激光陀螺测角仪在线计量的溯源问题,通过实验验证因直线拟合误差引入的测角误差小于0.05″,激光陀螺测角仪零起分度误差为±0.5″,可以满足大部分待测仪器的角度校准要求,为测试角位置误差提供了一种有效的在线计量方法。

       

      Abstract: Laser gyro can not be used as a metrological standard due to the problems of zero drift and traceability. To give full play to its superior high-precision angle measurement performance, this paper introduces its application in the measurement field in detail, redefines the performance parameters that can characterize the laser gyro goniometer more intuitively, and gives the definitions of “scale factor” and “bias” corresponding to “scale factor” and “zero drift” in the laser gyro. The performance parameters of the laser gyro goniometer, such as scale factor nonlinearity, stability and scale factor temperature sensitivity, scale coefficient temperature sensitivity, bias repeatability, stability and bias temperature sensitivity are tested experimentally, and the calibration method suitable for the laser gyro goniometer is given. Finally, a method to remove the linearity error is proposed to solve the problem of on-line measurement of laser gyro goniometer. The experimental results showed that the angle measurement error introduced by linear fitting error is less than 0.05'', and the zero division error of laser gyro goniometer is ±0.5'', which provides an effective on-line measurement method for measuring angular position error.

       

    /

    返回文章
    返回