Abstract:
Magnetic field as a vector field with magnitude and direction information, how to achieve high-precision measurement of the magnetic field vector in the existing atomic magnetometer has become an important research direction of the atomic magnetometer. The simultaneous detection of the magnitude and direction of the magnetic field in a single atomic magnetometer unit not only can obtain more magnetic field information and characterize the magnetic source more comprehensively and accurately but also reduces the size of the magnetic measurement device in the mobile platform. This paper divides the vector atomic magnetometer into two technical routes: configuration of applied magnetic field and all-optical detection, and introduces the basic principles, the current research status at home and abroad, and the future research directions of the vector atomic magnetometer. Several major vector magnetometer technical methods are introduced and summarized, including the applied magnetic field compensation method, bias magnetic field modulation method, external radio frequency field measurement method, electromagnetic induction transparent (EIT) detection method, the Bell-Bloom all-optical measurement method, etc. Finally, the future development direction and measurement application prospects of the high-sensitivity vector atomic magnetometer are prospected.