超宽浓度放射性参考气DT制备装置设计及性能研究

    Design and Performance Research of Preparation Device for Ultra-Wide Concentration Radioactive Reference Gas DT

    • 摘要: 为了满足流气式氚电离室测试和校准需求,须制备不同活度浓度的放射性参考气DT。借助秦山第三核电有限公司CANDU6堆中的含氚重水慢化剂和树脂净化系统,利用液体闪烁计数测量-电解法获得慢化剂活度浓度,质谱法分析电解气氢同位素丰度,并基于PVT指数稀释法,研制了超宽浓度放射性参考气DT制备装置。装置设计有催化-氧化-液体闪烁计数法验证单元,尾气收集-再利用处理单元,同时,样品制备时采用同位素浸润、内壁电镀等措施降低装置壁吸附-记忆效应。装置具有体积小、活度浓度范围宽、低浓度DT壁吸附-记忆效应小、交叉污染小、不确定度小等优点。制备的放射性参考气DT在标准状态下的活度浓度范围为4.0×104~1.0×1014 Bq/m3,放射性参考气DT可满足国内不同类型不同用途的流气式氚电离室测试、校准等需求。

       

      Abstract: To meet the testing and calibration requirements of the flow-through tritium ionization chamber, radioactive reference gas DT with different activity concentrations should be prepared. With the aid of the tritium-containing heavy water moderator and resin purification system in the CANDU6 reactor of Third Qinshan Nuclear Power Co., Ltd., the moderator activity concentration was obtained by liquid scintillation counting measurement-electrolysis method, and the hydrogen isotope abundance of the electrolytic gas was analyzed by mass spectrometry, and with the implementation of the PVT exponential dilution method, a preparation device for ultra-wide concentration radioactive reference gas DT was developed. The device was designed with a catalytic-oxidation-liquid scintillation counting verification unit and an exhaust gas collection-reuse processing unit, while isotope infiltration and inner wall electroplating and other measures were adopted for sample preparation to reduce the adsorption-memory effect on the device wall. The device has the advantages of small size, wide activity concentration range, low adsorption effect of low concentration DT, low cross-contamination, and low uncertainty. The prepared radioactive reference gas DT has an activity concentration range from 4.0×104~1.0×1014 Bq/m3 at the standard state, which can meet the needs of different types and applications of flow-through tritium ionization chamber testing and calibration in China.

       

    /

    返回文章
    返回