Abstract:
The Molecular Point-of-Care Test (POCT) represents a rapidly evolving nucleic acid testing method primarily grounded on isothermal amplification and microfluidic technologies. This technique provides numerous advantages including rapid testing, compact hardware, and simplicity in operation, thereby paving the way for immediate "sample in, result out" diagnostics. It serves as a powerful tool for the containment and management of epidemics such as COVID-19. Currently available molecular POCT diagnostic tools can detect various pathogenic microorganisms like human papillomavirus, human immunodeficiency virus, hepatitis C virus, and Neisseria gonorrhoeae, all while providing fast results and convenient portability. Despite its advantages, this technology remains in the nascent stages of industrial development, necessitating enhancements in the accuracy and consistency of molecular POCT products. Improvement in the relevant quality control measures and standards is required, with the establishment of a standardized validation and assessment system. This paper presents a comprehensive review of the most recent advancements in molecular POCT technologies, devices, and applications, which are underpinned by isothermal amplification and microfluidic principles. It also offers a forecast on the prospective trajectory of this technology.