甲醛-2,4-二硝基苯肼衍生物的合成与定性定量分析

    Synthesis of Formaldehyde-2,4-Dinitrophenylhydrazine Derivatives and its Qualitative and Quantitative Analysis

    • 摘要: 醛酮类含氧挥发性有机物污染物的监测受到广泛关注和研究。针对基于高效液相色谱法测量甲醛时缺乏甲醛-2,4-二硝基苯腙标准物质的现状,开展了甲醛与2,4-二硝基苯肼衍生反应制备甲醛腙的合成方法研究以及产物甲醛腙的定性与定量分析研究。通过对反应时间、反应溶液酸度以及萃取次数等反应条件进行优化,获得了衍生反应的最优条件:反应时间为30 min、反应溶液pH值为2、萃取次数为6次。通过红外光谱法和气相色谱-质谱法对衍生产物进行了定性分析确认,采用高效液相色谱法对衍生产物进行了定量分析测定且评估了测量不确定度。结果表明:衍生制备的甲醛-2,4-二硝基苯腙与NIST标准谱库符合良好,且其纯度可达98%,不确定度优于1%,可作为标准物质研制的候选材料;建立的液相色谱法可以准确测量甲醛腙。该研究工作将为甲醛-2,4-二硝基苯腙等典型醛酮腙类标准物质的制备、定值及研制提供重要参考。

       

      Abstract: The monitoring and research of volatile oxygenated organic pollutants, including aldehydes and ketones, have garnered widespread attention. Given the existing shortage of formaldehyde-2,4-dinitrophenylhydrazone standard substances for high-performance liquid chromatography (HPLC)-based formaldehyde measurement, this study embarks on exploring the synthesis method of formaldehyde hydrazone through the derivatization reaction of formaldehyde and 2,4-dinitrophenylhydrazine. It also delves into the qualitative and quantitative analyses of the resulting product. By optimizing reaction parameters such as reaction time, the acidity of the reaction solution, and the number of extractions, the study has identified optimal conditions for the derivatization reaction: a reaction time of 30 minutes, a reaction solution pH of 2, and 6 extraction iterations. Infrared spectroscopy and gas chromatography-mass spectrometry were employed to qualitatively confirm the derivatives, while HPLC was used for quantitative analysis, with a subsequent evaluation of measurement uncertainty. The results indicated that the synthesized formaldehyde-2,4-dinitrophenylhydrazone aligns well with the NIST Standard Spectrum Library, and could achieve a purity of up to 98% and an uncertainty of less than 1%, making it a promising candidate for standard substance formulation. Additionally, the established HPLC method has been proven capable of accurate formaldehyde-2,4-dinitrophenylhydrazone measurements. This study will offer vital insights for the preparation, valuation, and development of standard substances like formaldehyde-2,4-dinitrophenylhydrazone.

       

    /

    返回文章
    返回