颚式破碎机惯性力平衡优化

    Balance Optimization of Inertia Force of Jaw Crusher

    • 摘要: 颚式破碎机由于其工作性质的特殊性,在使用时会产生很大的噪音和振动,这些因素会导致机器关键零部件产生疲劳损伤,影响整个机器的结构特性和工作稳定性,间接影响着日常的作业环境和工作效率,严重的振动甚至能对机器自身造成不可修复的破坏,进而影响使用寿命。振动是影响仪器设备正常工作的关键因素,强烈的振动会对破碎机的转速校准精度造成显著影响。因此,为降低颚式破碎机的振动频率,通过对颚式破碎机进行系统建模,并采用C++编程辅助计算,分析了机械系统的振动来源,应用机械系统动力学相关知识,对系统惯性力进行分析,并对破碎机结构进行优化:通过改变破碎机飞轮的偏心配重以及配重角度,使得偏心轴、飞轮和大带轮的质心满足颚式破碎机运动构件的质心运动方程。实验表明,该方法能够将系统的惯性力降低到优化前的三分之二。

       

      Abstract: Due to the particularity of its working nature, jaw crushers produce a lot of noise and vibration, which can cause fatigue damage to key machine components, reduce the structural characteristics and working stability of the whole machine, and indirectly affect the daily working environment and efficiency. Severe vibration can even cause irreparable damage to the device itself, thus reducing its service life. Vibration is a crucial factor affecting the regular operation of instruments and equipment, and intense vibration significantly affects the speed calibration accuracy of the crusher. Therefore, to reduce the jaw crusher's vibration frequency, this paper uses system modeling and C++ programming to analyze the vibration sources of the mechanical system, apply relevant knowledge of mechanical system dynamics to analyze the system's inertia force, and optimize the crusher's structure. By changing the eccentric counterweight and counterweight angle of the crusher flywheel, the centroid of the eccentric shaft, flywheel, and large pulley can meet the motion equation of the centroid of the jaw crusher's moving components. Experimental results show that this method can reduce the inertia force of the system to two-thirds of its original value.

       

    /

    返回文章
    返回