双通道约瑟夫森结阵测试系统的设计

    Design of a Dual-Channel Josephson Array Test System

    • 摘要: 针对目前逐渐增多的芯片测试需求,设计了双通道约瑟夫森结阵测试系统,包括低温测试探杆、微波传输结构等关键部分。测试系统可实现对两个可编程约瑟夫森结阵器件进行同时测量,还可以实现两个芯片的叠加电压输出,通过对一个双通道可编程器件的测量验证了测试系统的上述功能。所测器件的最佳工作频率为17 GHz,在未加功率放大器的情况下工作功率为11 dBm。双通道小电压可编程约瑟夫森结阵器件最小结阵为1个结,输出电压为35.15 μV;最大结阵为512个结,输出电压为17998.42 μV,量子电压台阶的展宽范围为2 μV,这是由于34420A(1 V 档)噪声和测试系统噪声导致,满足量子电压测试需求。双通道的量子电压单结叠加输出为70.30 μV,512个结叠加输出为35996.84 μV,叠加后量子电压台阶的展宽范围也在2 μV以内,证明双通道约瑟夫森结阵测试系统不仅能对两个独立可编程芯片进行测量,还能够实现量子电压叠加输出功能,在不增加工艺难度的前提下,实现了更大量子电压的输出。

       

      Abstract: In response to the growing demand for chip testing, a dual-channel Josephson array test system was designed, incorporating key components such as low-temperature test probes and microwave transmission structures. The test system enables simultaneous measurement of two programmable Josephson devices and provides superimposed voltage output of the two chips. The system's functionalities were validated by measuring a dual-channel programmable Josephson device. The optimal operating frequency of the device is 17 GHz, with an operating power of 11 dBm without a power amplifier. For the dual-channel small voltage programmable Josephson device, the minimum array consists of 1 junction with an output voltage of 35.15 μV, and the maximum array contains 512 junctions with an output voltage of 17998.42 μV. The broadening range of quantum voltage steps is 2 μV. This is due to 34420A (1 V range) noise and testing system noise, which meets the requirements of quantum voltage testing.The dual-channel quantum voltage output is 70.30 μV for a single junction and 35996.84 μV for 512 junctions, the broadening range of quantum voltage steps after superposition is also within 2 μV. This demonstrates that the dual-channel Josephson array test system can not only measure two independent programmable chips but also achieve quantum voltage superimposed output without increasing process difficulty.

       

    /

    返回文章
    返回