不同聚合物基质的LA-ICP-MS剥蚀行为探究

    Investigation into the Ablation Behavior of Different Polymer Matrices using LA-ICP-MS

    • 摘要: 激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)是一种新型的固体分析技术,目前已广泛应用于地质、冶金、生物、环境等诸多领域。然而对聚合物样品的LA-ICP-MS定量分析中,存在由剥蚀行为差异引起的严重基质效应,从而导致灵敏度差异,最终对准确测量产生重大阻碍,目前关于该类样品剥蚀行为的研究尚为空白。选取了已知Pb、Cd和Cr元素浓度的四种聚合物样品,采用拓展景深显微成像技术研究193 nm及213 nm波长、2.5~15 J·cm−2能量密度等激光条件下剥蚀坑形貌的差异,以及其对信号稳定性及灵敏度的影响。结果显示,193 nm激光的剥蚀行为优于213 nm激光,并且在聚合物样品的激光剥蚀过程中至少存在溅射损失、剥蚀机制损失及絮凝沉降损失三类产生基质效应差异的机制,最终造成元素相关的灵敏度差异。综上,应通过控制能量密度,选用短波长激光来改善剥蚀行为,从而获得更好的分析准确度,并且在选择基质匹配的标准样品时,如热导率等影响剥蚀行为的性质也应纳入考量。相应标准物质及剥蚀行为的研究,应为该领域的研究重点,从而提高测定结果准确度,推动此领域应用的发展。

       

      Abstract: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a novel solid analysis technology, extensively utilized in geology, metallurgy, biology, and environmental studies among other fields. However, in LA-ICP-MS quantitative analysis of polymer samples, significant matrix effects exist, primarily attributed to differences in ablation behavior, resulting in sensitivity discrepancies and subsequently hindering accurate measurements. Currently, there is a paucity of research into the ablation behavior of such samples. This study selected four polymer samples with known concentrations of Pb, Cd, and Cr elements. The variances in ablation crater morphology under laser conditions of 193nm and 213nm wavelengths, and energy densities from 2.5 to 15 J·cm−2 were studied using extended depth of field microscopy imaging technology. Also, their effects on signal stability and sensitivity were examined. The results demonstrate superior ablation behavior of the 193nm laser compared to the 213nm laser. At least three mechanisms causing matrix effect differences were identified in the laser ablation process of polymer samples, leading to element-related sensitivity variances. They are sputtering loss, ablation mechanism loss, and flocculation-sedimentation loss. Consequently, better analysis accuracy can be achieved by improving ablation behavior through energy density control and short-wavelength laser selection. Considerations such as thermal conductivity, which influences ablation behavior, should be factored in when selecting matrix-matched standards. The study of corresponding standard materials and ablation behavior should be prioritized in this field, to enhance the accuracy of measurements and foster the development of applications in this domain.

       

    /

    返回文章
    返回