自溯源型MOEMS加速度计谐振子设计仿真研究

    Design and Simulation of a Self-Traceable MOEMS Accelerometer Oscillator

    • 摘要: MOEMS加速度计是加速度传感器未来的发展趋势之一,光学位移检测手段是决定测量精度的核心因素,与之配套的谐振子设计、匹配关系是充分发挥其性能的关键要素。自溯源光栅干涉仪是一种超精密位移测量方法,具有测量直接溯源、精度高、小型化等优势,非常契合MOEMS加速度计的位移测量需求。结合自溯源光栅干涉仪特性,计算、设计并仿真了自溯源型MOEMS加速度计谐振子。基于谐振子力学理论模型,计算了谐振子刚度和固有频率,采用COMSOL软件仿真了谐振子谐振模态、不同轴向的灵敏度与应力分布,设计了位移灵敏度高达10.01 μm/g,同时具有超低横向串扰的谐振子,对直接溯源型高精度加速度测量方案的技术研发与性能优化具有重要意义。

       

      Abstract: MOEMS accelerometers are emerging as a pivotal trend in acceleration sensor technology. The accuracy of their measurements predominantly hinges on optical displacement detection methods. The coherent design and the congruence of the oscillator are pivotal for maximizing measurement efficacy. This study introduces a super-precise displacement measurement method, the self-traceable grating interferometry, marked by its direct traceability, high precision, and miniaturization, aligning seamlessly with the displacement measurement prerequisites of MOEMS accelerometers. Leveraging the properties of the self-traceable grating interferometry, we design, calculate, and simulate the oscillator of a self-traceable MOEMS accelerometer. Through the mechanical theory model, we deduced the stiffness and natural frequency of the oscillator. Utilizing the COMSOL software, simulations were run on its resonant modes, axial sensitivities, and stress distributions. Our design achievements include a oscillator with a remarkable displacement sensitivity reaching 10.01 μm/g and exhibiting minimal cross-coupling. Such advancements underscore the value of this research in the realm of direct traceability and the refinement of high-precision accelerometer measurement paradigms.

       

    /

    返回文章
    返回