光栅单色仪波长校准装置可计量性设计研究

    Design and Measurability Study of Wavelength Calibration Devices for Grating Monochromators

    • 摘要: 针对基于连续光谱光源和傅里叶变换光谱仪的光栅单色仪波长校准装置开展计量需求分析,梳理并提取了波长示值误差、光谱带宽、波长重复性等作为实现可计量性的参数。开展可计量性设计,着重介绍了波长示值误差的测量方法、溯源途径、光机接口等可计量性设计的核心要素,通过实验进行可计量性设计的验证。按照该装置的全寿命流程开展可计量性设计,通过多个利益攸关方的视角进行各个场景下的深入分析。可计量性研究确保计量仪器的各项需求都经过了完整的考虑与准备,对各项潜在问题进行先后排序后,引导逐项实施落实,从而可以避免项目推进过程中出现的管理死角,提升计量装置研制项目的成功概率。

       

      Abstract: This paper presents a comprehensive measurability analysis for grating monochromator wavelength calibration devices based on continuous spectrum light sources and Fourier Transform Spectrometers (FTS). The study identifies and extracts critical parameters such as wavelength indication error, spectral bandwidth, and wavelength repeatability for achieving measurability. The research delves into the metrological design, emphasizing the measurement methodologies for wavelength indication error, the routes for traceability, and the interface dynamics between optics and mechanics. The veracity of the proposed metrological design is tested through a series of experiments. The study adopts a life-cycle approach for the device's measurability design, analyzing from the vantage points of multiple stakeholders and under varied scenarios. The overarching goal of this research is to ensure that all requirements for measurement instruments are meticulously addressed. By sequentially addressing potential pitfalls, this study aims to mitigate management oversights during the project's progression, thereby enhancing the likelihood of success for the measurement device's development.

       

    /

    返回文章
    返回