Abstract:
In automatic temperature measurement systems, the mismatch between the computer-controlled scanning switch channel switching time and the sampling time of electrical measuring instruments can lead to data acquisition distortion. Building upon existing calibration techniques addressing parasitic potential and channel-to-channel data acquisition disparities, a novel calibration method focusing on dynamic acquisition differences among scanning switch channels is proposed. By scrutinizing metrological attributes delineated in current national standards, a calibration measurement standard for scanning switches was established and validated through feasibility trials. Within the trials, the calibration methodology was verified using conversion switches in both thermocouple and thermal resistance automatic measurement systems. Based on the experimental outcomes, refinements were made to the calibration method, followed by validation testing. The findings underscore that the calibration method, predicated on dynamic acquisition discrepancies among scanning switch channels, effectively tackles the measurement issues of dynamic channel differences, aligning with the requisite stipulations of existing national standards. This method holds significant practical value for data acquisition in automatic temperature measurement systems, ensuring precise and reliable temperature measurement data.