基于泊肃叶定律的脉动微流量测量方法

    Measurement Technique for Pulsatile Microflow Based on Poiseuille’s Law

    • 摘要: 为了解决高压工况下脉动微流量的测量问题,结合差压变送器耐压高、响应快等特点,基于泊肃叶定律,利用差压信号对脉动微流量进行间接测量。设计了脉动流路中差压值测量方案,通过数值积分与时间修正的方法,将差压信号换算的累计质量与天平静态累计质量进行比对,有效地解决了以往天平称重与秒表计时方法测量精度低的问题。结合天平动态采样对差压法的瞬时流量进行验证,数据结果表明,在具有脉动特征的0.2~0.5 mL/min微流量范围内,采用差压法测量平均流量的误差不高于±0.5%,测量瞬时流量的误差不高于±1.5%,满足相关设备的流量测量精度需求,同时解决了市面上微流量传感器售价高、使用时耐压值有限的问题。

       

      Abstract: To address the challenge of measuring pulsatile microflow under high-pressure conditions in the realm of physical and chemical analysis instrumentation, a methodology grounded on the Hagen-Poiseuille law has been devised. This methodology leverages the differential pressure signal for indirect measurement, capitalizing on the traits of high pressure endurance and swift response manifested by the differential pressure transducer. A scheme for measuring differential pressure values within the pulsatile flow pathway has been designed. Employing numerical integration alongside dual time correction, the accumulated mass derived from differential pressure signals was juxtaposed against the static accumulated mass from a balance to validate the measurement accuracy. This effectively ameliorates the erstwhile issue of low accuracy found in balance weighing and stopwatch timing methods. The differential method’s instantaneous flow rate was corroborated through dynamic sampling functions of a balance. Data outcomes denote that within the pulsatile characteristic range of 0.2 to 0.5 mL/min, the error in measuring average flow rate via the differential method does not exceed ±0.5%, and the error in measuring instantaneous flow rate does not surpass ±1.5%. This accords with the flow measurement accuracy requisites of relevant instruments, and concurrently mitigates the issues of exorbitant pricing of microflow sensors and limited pressure resistance during usage.

       

    /

    返回文章
    返回