紧锁喷泉钟小型化光学系统研究

    Investigation on Miniaturized Optical System for Rapid Steering Fountain Clock

    • 摘要: 紧锁喷泉钟是实现紧驾驭氢钟守时的频率基准装置,为适应守时要求,需要提升紧锁喷泉钟运行可靠性和稳定度。光学系统作为其最脆弱的系统组成,易受温度等环境因素的影响,导致原子云温度、原子数波动,恶化其频率稳定度。通过降低光高、减少光程、减少弹性调节架、合理布局光路,给出一种运用于紧锁喷泉钟的小型化光学系统。该系统利用波片偏振分光镜组合、竖置声光调制器、猫眼双次通过声光调制器等新设计,将所有光路装置集成在一块400 mm×600 mm的标准25 mm孔距光学平板上。利用泡沫包裹整个光学系统进行温度波动测试,当温度变化12 ℃时,其最长光路的光纤后光功率波动小于6.6%,有效提升了喷泉钟光学系统的紧凑性和稳定性。该小型化光学系统运用到紧锁铷喷泉钟上,实现了天原子波动数5.28%,喷泉钟频率天稳定度5.57E-16。

       

      Abstract: The Rapid Steering Fountain Clock is a frequency reference device pivotal for steering hydrogen maser time-keeping. To fulfill time-keeping demands, enhancing the operational reliability and stability of the rapid-steering fountain clock is crucial. The optical system, being the most vulnerable component, is susceptible to environmental factors like temperature, causing fluctuations in atomic cloud temperature and atomic number, thereby deteriorating frequency stability. This study proposes a miniaturized optical system for the rapid-steering fountain clock, achieved by lowering light height, minimizing light path, reducing elastic adjustment frames, and optimizing optical path layout. Utilizing new designs such as waveplate polarizing beamsplitter combination, vertically positioned acousto-optic modulator, and double-pass through cat-eye acousto-optic modulator, all optical devices are integrated onto a 400mm×600mm optical bench with a standard 25 mm hole spacing. The entire optical system, wrapped in foam, underwent temperature fluctuation testing, revealing that with a 12 ℃ temperature change, the optical power fluctuation post-optical fiber in the longest optical path is below 6.6%, significantly improving the compactness and stability of the fountain clock optical system. When applied to the rapid-steering rubidium fountain clock, a daily atomic number fluctuation of 5.28% and a fountain clock frequency daily stability of 5.57E-16 were achieved.

       

    /

    返回文章
    返回