环境空气采样用滤膜截留效率测试方法研究

    Investigation of Filtration Membrane Collection Efficiency Testing Methods for Ambient Air Sampling

    • 摘要: 为了满足环境空气滤膜截留效率的测试需求,保障环境空气滤膜截留效率测试的一致性和准确性,针对滤膜截留效率测试方法中所涉及的关键影响因素和可行性进行分析,分别研制了基于颗粒物数量浓度和基于颗粒物质量浓度的两种滤膜截留效率测试方案,用于开展环境空气滤膜截留效率的测试。介绍了环境空气滤膜截留效率测试的原理、实验装置需求和试验过程,并在此基础上针对不同材质和应用的环境颗粒物采样滤膜进行了测试。实验数据结果表明,在截留效率测试结果的符合性上两种方法保持高度的一致性,而在测试数据上,基于数量浓度的测试方法略低于基于质量浓度的测试方法,综合分析原因在于测试方法本身的限制和不同检测装置带来的测试偏差,但整体上对测试结果的影响可以忽略,两种方法均具有较高的可靠性和等效性。研究成果为进一步推广于实际应用中,可以根据实际实验装置的配置,任意选择基于颗粒物数量浓度或者颗粒物质量浓度中的一种测试方法进行滤膜截留效率的测试,为保证测试的准确可靠奠定了基础。

       

      Abstract: This study aims to satisfy the testing needs for the collection efficiency of filtration membranes used in ambient air sampling and to ensure the consistency and accuracy of these tests. It analyzes the key influencing factors and the feasibility of the filtration membrane collection efficiency testing methods. Subsequently, two testing schemes based on particle number concentration and particle mass concentration are developed to assess the collection efficiency of ambient air filtration membranes. This paper presents the principles, experimental device requirements, and procedures of these testing schemes. Tests were conducted on various materials and applications of ambient particulate matter sampling filters. The experimental results show a high degree of consistency between the two methods in terms of collection efficiency test conformity. However, the method based on number concentration yields slightly lower results compared to the mass concentration-based method. The differences are attributed to the inherent limitations of the testing methods and deviations caused by various detection devices, though these impacts are negligible overall. Both methods demonstrate high reliability and equivalence, laying a foundation for their use in practical applications. Depending on the configuration of their experimental devices, users can choose either method for testing the collection efficiency of filtration membranes, ensuring the test's accuracy and reliability.

       

    /

    返回文章
    返回