GA-BP模型在大气微站数据修正中的应用

    Application of GA-BP Model in Data Correction of Atmospheric Miniature

    • 摘要: 针对大气微站中的电化学气体传感器选择性不足,容易受到非目标气体交叉干扰的问题,提出使用遗传算法(GA)优化的反向传播(BP)神经网络模型(GA-BP模型)对微站进行数据修正的方法。GA-BP模型在善于处理非线性黑箱问题的BP神经网络模型的基础上引入具有全局寻优能力的GA,通过GA对神经网络的初始参数进行优化,弥补了BP神经网络容易陷入局部极小值的缺陷,提升了模型整体的精度和稳定性。实验结果表明,经过GA-BP模型修正后的微站可以实现对混合气体中的NO2、CO、O3和SO2的准确定量分析,4种气体浓度的计算值和实测值之间的拟合优度(R2)均超过了0.95,与一元、多元线性回归和传统的BP神经网络相比,修正效果优势明显。此外,GA-BP模型还具有良好的泛化能力,将未参与训练的微站数据带入其中,得到的4种气体浓度计算值和实测值之间的R2值也均在0.88以上,证明了本方法具有很好的适用性,可以为厂家提升设备性能以及使用者得到准确的空气污染物的浓度数据提供有益的参考。

       

      Abstract: This paper addresses the issue of insufficient selectivity in electrochemical gas sensors within atmospheric miniature monitoring stations, which are susceptible to cross-interference from non-target gases. A data correction approach using a Genetic Algorithm (GA) optimized Back Propagation (BP) neural network (GA-BP model) is proposed. The GA-BP model enhances the BP neural network, adept at tackling nonlinear black-box problems, by integrating GA's global optimization capability. This integration optimizes the neural network's initial parameters, overcoming the BP network's tendency to fall into local minima, and thus enhances the model's overall accuracy and stability. Experimental results demonstrate that the miniature monitoring stations equipped with the GA-BP model can accurately quantify NO2, CO, O3, and SO2 concentrations in mixed gases. The goodness of fit (R2) between the computed values and actual measurements of these four gases exceeded 0.95. Compared to univariate, multivariate linear regressions, and traditional BP neural networks, the GA-BP model shows clear superiority. Moreover, the model exhibits strong generalization capabilities. When applied to new, untrained station data, it achieved R2 values above 0.88 for all four gas concentrations, affirming the method's robust applicability. This approach provides a beneficial reference for manufacturers to enhance equipment performance and for users to obtain accurate air pollutant concentration data.

       

    /

    返回文章
    返回