α、β表面污染仪自动检定装置的研制与实验研究

    Development and Experimental Study of an Automatic Verification Device for Alpha and Beta Surface Contamination Monitors

    • 摘要: 为提升检定仪器的效率和准确性,降低α、β表面污染仪检定过程中人工操作仪器、人工读数和记录对检定结果的影响,基于自动化技术和机器视觉算法研制了一套α、β表面污染仪自动检定装置。该装置包括双层换源转盘、基于机器视觉技术的图像训练软件和基于C#语言编写的自动检定控制软件。对装置进行了检定流程、硬件结构和软件优化设计,并在软件中增加了识别异常结果检验算法,可根据目标识别区域的特点进行条件筛选和异常数据剔除,提高了光学字符识别(OCR)正确率。开展了识别率测试、本底影响测试、比对测试和自动检定流程测试,检验了该装置的性能。结果证明,该装置对原始数据的识别率达到100%,装置内平面源的集中放置没有产生额外的本底干扰,使用手动定位支架和自动检定装置的测量结果的最大相对偏差为−6.0%,两结果在不确定度范围内一致性较好。该装置在满足JJG 478-2016要求的基础上,优化了辐射防护和源的固有安全性,提高了检定工作效率。

       

      Abstract: To enhance the efficiency and accuracy of instrument verification and reduce the impact of manual operation, reading, and recording on verification results of alpha and beta surface contamination monitors, an automatic verification device was developed based on automation technology and machine vision algorithms. The device comprises a double-layer source-changing turntable, image training software based on machine vision technology, and automatic verification control software written in C#. The verification process, hardware structure, and software were optimized, and an algorithm for identifying abnormal results was incorporated into the software. This algorithm can perform conditional filtering and abnormal data elimination based on the characteristics of the target recognition area, improving the accuracy of optical character recognition (OCR). Performance tests, including recognition rate testing, background influence testing, comparative testing, and automatic verification process testing, were conducted. Results show that the device achieves a 100% recognition rate for original data, with no additional background interference from the centralized placement of planar sources within the device. The maximum relative deviation of measurement results between manual positioning brackets and the automatic verification device is -6.0%, showing good consistency within the uncertainty range. While meeting the requirements of JJG 478-2016, this device optimizes radiation protection and inherent source safety, significantly improving verification efficiency.

       

    /

    返回文章
    返回