CO2检测方法研究现状

    Research Tatus of CO2 Detection Methods

    • 摘要: CO2是一种重要的温室气体,它对地球环境和人类健康等多方面造成危害。随着工业化、城市化和能源消耗的增加,大气中CO2等温室气体的排放量持续增加,引发了人类对全球气候变化的担忧。因此,对CO2浓度进行检测变得至关重要。目前,碳排放计算方法主要有检测法与核算法两类。与核算法相比,检测法具有精度高、能够实时监测的优点,且更利于指导机组低碳改造和运行。主要介绍了现有的CO2主要检测方法,包括化学分析法和物理光学分析法两类。化学分析法主要有电位滴定法、化学吸收法、气敏传感技术、气相色谱法和质谱法等;物理光学分析法有光腔衰荡光谱法、离轴积分腔吸收光谱法、非分散红外吸收光谱法、傅里叶变换红外光谱分析、可调谐半导体激光吸收光谱法等。传统化学分析法更适合复杂组分的精确检测,但通常不适合用于长周期在线检测。随着计算机技术和光学检测技术的快速发展,新兴的物理光学检测技术逐渐发挥出更大的优势。通过对检测方法的总结与分析,有助于研究人员选择合适的CO2检测方法和为相关行业提供数据支持,有助于开发高灵敏度、高精度的碳计量与检测设备,助力双碳政策实施和环境空气质量控制。

       

      Abstract: CO2 is an important greenhouse gas that poses multifaceted hazards to the Earth's environment and human health. With the increase in industrialization, urbanization, and energy consumption, the emission of greenhouse gases such as CO2 in the atmosphere has continued to increase, raising concerns about global climate change. Therefore, the detection of CO2 concentration has become crucial. Currently, there are two main types of carbon emission measurement methods: testing methods and accounting methods. Testing methods have the advantages of high precision and real-time monitoring, making them more conducive to guiding the low-carbon transformation and operation of the unit compared to accounting methods. This paper mainly introduces the existing primary detection methods for CO2, which include chemical analysis methods and physical optical analysis methods. Chemical analysis methods mainly include potentiometric titration, chemical absorption, gas-sensitive sensing technology, gas chromatography, and mass spectrometry. Physical optical analysis methods include cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS), non-dispersive infrared (NDIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and tunable diode laser absorption spectroscopy (TDLAS). Traditional chemical analysis is more suitable for accurate detection of complex components but is usually not suitable for long-period online detection. With the rapid development of computer technology and optical detection technology, emerging physical optical detection technologies gradually play a greater advantage. This paper summarizes and analyzes various detection methods that can help researchers select suitable CO2 detection methods and provide data support for related industries. It can also help develop high-sensitivity and high-precision CO2 metrology and detection equipment, which can aid in implementing the dual-carbon policy and controlling ambient air quality.

       

    /

    返回文章
    返回