电解质溶液渗透系数理论在水分活度等物理化学特性量计量中的应用

    Application of Osmotic Coefficient Theory of Electrolyte in Metrology of Physical Chemistry Quantities Including Water Activity

    • 摘要: 渗透系数(ϕ)反映了电解质溶液中溶剂偏离理想溶液的程度。渗透系数可采用蒸气压法和电动势法等多种方法测定。美国国家标准局统计了已发表的数据,以每种电解质溶液的多套科学数据的平均值,作为该电解质溶液的渗透系数的标准值,并给出了渗透系数的标准偏差。该渗透系数的标准数据以德拜-休克尔公式的形式表达,方便使用者代入电解质溶液的质量摩尔浓度计算对应的渗透系数。渗透系数可用于计算电解质溶液的水分活度、冰点和渗透压摩尔浓度,从而为相关特性量标准溶液定值,分别用于校准相关特性量的测量仪器。在众多的电解质中,最常用的是氯化钠。国际标准和国家标准规定的上述特性量的标准值,和根据渗透系数标准数据计算得到的结果一致性良好。根据渗透系数标准数据计算相关特性量的标准值,能够通过渗透系数标准数据间接地溯源至蒸气压和电动势等量值的SI单位。

       

      Abstract: Osmotic coefficient (ϕ) is a measure of the deviation of the solvent of electrolyte from the ideal solution. ϕ was usually determined by the manometric method and the electromotive force method. National bureau of standard of United States of America published the reference value of osmotic coefficient equal to the average of many scientific data and its standard deviation based on the statistics. This reference data was expressed as the Debye-Hückel equation. When the molality of the electrolyte was introduced in the equation, and thus the corresponding osmotic coefficient was deduced. ϕ can be used to calculate the water activity, freezing point depression and osmotic pressure concentration of the solution of electrolyte, and thus the reference solution of these quantities were determined and then used to calibrate the instrument of these quantities. Sodium chloride was the most commonly used electrolyte. The reference values specified by the related international or national standard were well consistent with the results calculated using the reference data of ϕ. The reference values of related physical chemistry quantities calculated using the reference data of ϕ were traceable to SI units of vapor pressure or potential of the electromotive force indirectly.

       

    /

    返回文章
    返回