人工智能辅助核磁共振波谱法的研究进展

    Research Progress of Artificial Intelligence Assisted Nuclear Magnetic Resonance Spectroscopy

    • 摘要: 核磁共振波谱法(NMR)是有机化学和生化分析领域的重要分析方法;定量核磁共振法作为潜在计量基准方法,已成为有机化合物和生化大分子纯度标准物质定值及国际比对的主要手段。近年来,人工智能(AI)与核磁共振波谱学的深度融合为该领域带来了巨大变化,显著提升了分析的准确性、效率及适用范围。综述了近年来人工智能辅助核磁共振波谱法的国内外研究进展,重点介绍了AI技术在化学位移预测、谱图模拟与重建、谱峰选择与谱图处理、匀场、射频脉冲设计、纯化合物结构解析、反应监测、复杂基体样品分析(如海洋、代谢组学及生物分子分析)、材料特性预测及工业质量控制等方向的应用,并探讨了面向核磁共振的专用AI技术发展现状。

       

      Abstract: Nuclear magnetic resonance spectroscopy (NMR) is a pivotal analytical method in organic chemistry and biochemical studies. As a potential metrological reference method, quantitative NMR has become the primary approach for value assignment and international comparison of purity reference materials for organic compounds and biochemical macromolecules. In recent years, the integration of artificial intelligence (AI) into NMR spectroscopy has vastly changed this field, significantly enhancing analytical accuracy, efficiency, and applicability. This review summarizes global research progress in AI-assisted NMR spectroscopy over the past decade. Key advancements include AI applications in chemical shift prediction, spectrum simulation and reconstruction, peak selection and spectral processing, shimming, radio-frequency pulse design, structural elucidation of pure compounds, reaction monitoring, complex matrix sample analysis (e.g., marine, metabolomic and biomolecular analysis), material property prediction, and industrial quality control. Additionally, dedicated AI technologies tailored for NMR applications are discussed.

       

    /

    返回文章
    返回