冷原子系统中椭球形积分球光传播路径与调控

    Optical Propagation Path and Control of Ellipsoidal Integrating Sphere in Cold Atomic System

    • 摘要: 积分球冷却凭借其全光冷却的独特优势,无需磁光阱捕获冷原子时所必需的梯度磁场,在小型冷原子系统特别是空间原子钟领域展现出广泛的应用前景。积分球装置在稳定或泵浦捕获原子过程中发挥着重要作用。常见的积分球激光冷却装置为球形积分球,因其在空间各方向径向距离一致,导致球心处光强参数的调控较为单一。同时积分球的小型化导致积分球内光场分布不均匀,对原子冷却效率下降,从几何角度剖析,球形积分球实则是椭球形积分球在特定参数调整后的特殊形态,故而椭球形积分球具备更多自由度与更为广泛的应用场景。为了进一步减少积分球体积,同时提升光场均匀性,增强原子冷却效率,本研究突破传统球形积分球的几何限制,首创性地提出并验证了椭球结构的光场调控理论。通过解析推导与数值实验证明:当入射光平行于Z轴时,椭球积分球可同时实现光场汇聚增强与均匀性提升,解决了小型化系统中光强不足与分布失控的核心矛盾。该成果为下一代微型冷原子装置提供了变革性设计范式。

       

      Abstract: Integrating sphere cooling, with its unique advantage of being an all-optical cooling method that eliminates the need for gradient magnetic fields required in magneto-optical traps, demonstrates broad application prospects in compact cold-atom systems, particularly in space atomic clocks. The integrating sphere plays a crucial role in stabilizing or optically pumping trapped atoms. Conventional integrating sphere laser cooling devices typically employ spherical integrating spheres, where the uniform radial distance in all spatial directions results in limited tunability of light intensity parameters at the sphere's center. Moreover, the miniaturization of integrating spheres leads to non-uniform light field distribution inside the sphere, reducing atomic cooling efficiency. From a geometric perspective, a spherical integrating sphere is essentially a special case of an ellipsoidal integrating sphere with specific parameter adjustments. Therefore, ellipsoidal integrating spheres offer more degrees of freedom and broader application potential. To further reduce the volume of the integrating sphere while improving light field uniformity and enhancing atomic cooling efficiency, this study breaks through the geometric limitations of traditional spherical integrating spheres and innovatively proposes and validates a light field control theory based on ellipsoidal structures. Through analytical derivation and numerical experiments, we demonstrate that when incident light is parallel to the Z-axis, an ellipsoidal integrating sphere can simultaneously achieve enhanced light field convergence and improved uniformity, addressing the core challenges of insufficient light intensity and uncontrolled distribution in miniaturized systems. This achievement provides a transformative design paradigm for next-generation compact cold-atom devices.

       

    /

    返回文章
    返回