基于粉末冶金的高纯镍成分分析标准物质制备新方法

    A New Method for Preparing High - Purity Nickel Component Analysis Standard Substances Based on Powder Metallurgy

    • 摘要: 高纯镍靶材作为半导体、集成电路等行业中的关键材料,需严格控制和确保其纯度。辉光放电质谱仪(GD-MS)作为高灵敏度的成分分析手段,是高纯金属纯度测定的主要方法,但其定量分析需要与样品基体相似的有证标准物质,以校正各元素的相对灵敏度因子(RSF)。然而目前市面上缺乏高纯镍成分分析标准物质,常用的高温熔融法难以满足多元素掺杂的要求。建立了基于粉末冶金技术制备金属基体标准物质的新方法,对掺杂方式、压制压力、烧结气氛、烧结温度等进行了较为详细的研究。结果表明,利用滴涂法和浸泡法对羰基镍粉进行掺杂时,均能较好将痕量元素掺杂进粉末中,相比浸泡法,由于掺杂过程中各元素损失较少且较少出现氧化现象,滴涂法更适合大批量实验。在粉末冶金过程中,过大的压制压强将导致样品开裂进而影响致密性的提升,过高的温度和还原性的烧结气氛会造成掺杂元素产生较多损失,较低的温度则会导致去除内部应力使得难以通过复压提升致密性。采用700MPa压制压强,700℃烧结温度以及惰性烧结气氛可以使掺杂元素得到较好保留的同时致密性可达到89%。同时还研究了3D打印法制备标准物质的可行性,该方法制备出的样品致密性高于粉末冶金法,且大多数杂质元素可以保留,因此认为该方法在标准物质制备方面有可行性。

       

      Abstract: High-purity nickel targets, as critical materials in semiconductor and integrated circuit industries, require stringent purity control and verification. Glow Discharge Mass Spectrometry (GD-MS), serving as a high-sensitivity compositional analysis technique, represents the primary method for purity assessment of high-purity metals. However, its quantitative analysis necessitates matrix-matched certified reference materials (CRMs) to calibrate relative sensitivity factors (RSFs) of elements. Presently, the scarcity of CRMs for high-purity nickel analysis and the limitations of conventional high-temperature fusion methods in achieving multi-element doping pose significant challenges. This study developed a novel methodology for fabricating metallic matrix reference materials through powder metallurgy technology, with systematic investigations on doping strategies, compaction pressure, sintering atmosphere, and temperature. Results demonstrate that both drop-coating and immersion methods effectively incorporate trace elements into carbonyl nickel powders. Comparatively, drop-coating exhibits superior suitability for large-scale production due to minimized elemental loss and reduced oxidation during doping. In powder metallurgy processing, excessive compaction pressure induces sample cracking that compromises densification enhancement, while overly high temperatures and reductive atmospheres provoke substantial elemental loss. Insufficient sintering temperatures hinder internal stress relief, limiting densification improvement through repressing. Optimal parameters (700 MPa compaction pressure, 700°C sintering temperature, and inert atmosphere) achieved 89% density while effectively preserving doped elements. Additionally, the feasibility of 3D printing for reference material preparation was explored. The 3D-printed samples exhibited higher densification than powder-metallurgy counterparts with retained impurity elements, demonstrating promising potential for CRM fabrication. This work provides technical insights into standardized preparation methods for high-purity nickel matrix reference materials.

       

    /

    返回文章
    返回