高声压谐振耦合管共振频率的优化设计

    Design Optimization of the Resonance Frequency of a High Sound Pressure Resonant Coupled Tube

    • 摘要: 谐振耦合管法产生的声压源具有高声压级、低失真的特点,通常用于高声压传声器在固定频率下的线性度校准。基于声学有限元模型,分析了谐振耦合管的特征频率和频率响应,优化了谐振耦合管的设计,其共振基频的实验值与计算值相差0.8 Hz,500 Hz谐振耦合管实现的声压级可到174 dB,总谐波失真为0.5%。

       

      Abstract: The sound pressure source generated by the resonant coupled tube method has a high sound pressure level with a low distortion. It is usually used for the calibration of level linearity and distortion of high sound pressure microphones at a fixed frequency. Based on the acoustic finite element model, this paper analyzes the characteristic frequency and frequency response of a resonant coupled tube, and optimizes the design of the tube. The experimental value of the resonant fundamental frequency differed from the calculated value by 0.8 Hz. The resonant coupled tube at 500 Hz generated a sound pressure level of 174 dB with a total harmonic distortion of 0.5%.

       

    /

    返回文章
    返回