A Review of Research Literature on Ultra-Precision Nuclear Clocks
-
摘要: 基于原子核能级跃迁的高精度光学时钟——核钟的计时精度将优于当前的黄金计时标准——原子钟,相关研究具有重大的科学意义、重要的战略意义及推动社会发展的巨大潜力。首先,通过文献计量法梳理了2003年以来超精密钍核钟的发展历程。然后,利用科学知识图谱直观展示了目前核钟领域科研力量的宏观(国家)、中观(机构)、微观(人员)分布情况,主要研究方向及主要资助机构等情况,以期为我国相关地区或科研机构开展核钟研究提供信息支撑。Abstract: Nuclear clocks, the high-precision optical clocks based on nuclear energy level transitions, are deemed to have better timing accuracy than atomic clocks, the current gold timekeeping standard. Related research has great scientific and strategic significance for the development of our society. The development of ultra-precision thorium nuclear clocks since 2003 is investigated using the bibliometric method. Scientific knowledge maps are used to show the current macro (national-level), meso (institutional-level), and micro (personnel-level) distributions of research forces, main research topics, and main funding agencies in the field of nuclear clocks.
-
Key words:
- nuclear clock /
- ultra-precision /
- research status
-
表 1 核钟领域核心文献列表
Table 1. List of core literature on nuclear clocks
合计被引频次 年均被引频次 出版年份 文献题名 199 11.7 2003 Nuclear laser spectroscopy of the 3.5 eV transition in Th-229 116 14.5 2012 Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place 95 9.5 2010 Constraining the Evolution of the Fundamental Constants with a Solid-State Optical Frequency Reference Based on the Th-229 Nucleus 74 18.5 2016 Direct detection of the Th-229 nuclear clock transition 56 4.3 2007 Variation of the fundamental constants: Theory and observations 53 6.6 2012 Performance of a (229)Thorium solid-state nuclear clock 46 9.2 2015 Nuclear clocks based on resonant excitation of gamma-transitions 44 4.0 2009 Search for variation of the fundamental constants in atomic,
molecular, and nuclear spectra40 (3.6) 2009 Enhanced effect of quark mass variation in Th-229 and limits from Oklo data 36 (3.3) 2009 Nuclear structure of lowest Th-229 states and time-dependent fundamental constants 34 3.875 2012 Observation of the Deexcitation of the Th-229m Nuclear Isomer 30 15.0 2018 Laser spectroscopic characterization of the nuclear-clock isomer Th-229m (20) 6.7 2017 Reduced Transition Probabilities for the Gamma Decay of the 7.8 eV Isomer in Th-229 (4) 4.0 2019 Energy of the Th-229 nuclear clock transition (3.0) (3.0) 2019 X-ray pumping of the 229Th nuclear clock isomer *年均被引频次=合计被引频次/已发表时长,已发表时长=2020-出版年 -
[1] BREWER S M, CHEN J S, HANKIN A M, et al. 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18[J]. Physical Review Letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201 [2] PEIK E, TAMM C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229[J]. Europhysics Letters (EPL), 2003, 61(2): 181-6. doi: 10.1209/epl/i2003-00210-x [3] TAMM C, SCHNEIDER T, PEIK E. Trapped ion optical frequency standards for laboratory tests of alpha-variability[M]. KARSHENBOIM S G. Astrophysics, Clocks and Fundamental Constants. Berlin; Springer-Verlag Berlin. 2004: 247-61. [4] FLAMBAUM V V. Variation of fundamental constants[C]. ROOS C, HAFFNER H, BLATT R. Atomic Physics 20. Melville: Amer Inst Physics, 2006: 29-36. [5] HE X T, REN Z Z. Enhanced sensitivity to variation of fundamental constants in the transitions of Th-229 and Bk-249[J]. J Phys G-Nucl Part Phys, 2007, 34(7): 1611-9. doi: 10.1088/0954-3899/34/7/003 [6] FLAMBAUM V V, AUERBACH N, DMITRIEV V F. Coulomb energy contribution to the excitation energy in Th-229 and enhanced effect of alpha variation[J]. Epl, 2009, 85(5): 6. [7] PEIK E, ZIMMERMANN K, OKHAPKIN M, et al. PROSPECTS FOR A NUCLEAR OPTICAL FREQUENCY STANDARD BASED ON THORIUM-229[M]. Singapore: World Scientific Publ Co Pte Ltd, 2009. [8] CAMPBELL C J, RADNAEV A G, KUZMICH A, et al. Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place[J]. Physical Review Letters, 2012, 108(12): 120802. doi: 10.1103/PhysRevLett.108.120802 [9] MASUDA T, YOSHIMI A, FUJIEDA A, et al. X-ray pumping of the 229Th nuclear clock isomer[J]. Nature, 2019, 573(7773): 238-42. doi: 10.1038/s41586-019-1542-3 [10] SEIFERLE B, VON DER WENSE L, BILOUS P V, et al. Energy of the 229Th nuclear clock transition[J]. Nature, 2019, 573(7773): 243-6. doi: 10.1038/s41586-019-1533-4 [11] BURKE J T. One tick closer to a nuclear clock [DB/OL]. [2019-09-11]. https://www.nature.com/articles/d41586-019-02664-8. [12] 王义遒. 建设我国独立自主时间频率系统的思考[J]. 宇航计测技术, 2004, 24(1): 1-10. [13] DEREVIANKO A, POSPELOV M. Hunting for topological dark matter with atomic clocks[J]. Nature Physics, 2014, 10(12): 933-6. doi: 10.1038/nphys3137 [14] FLAMBAUM V V. Enhanced Effect of Temporal Variation of the Fine Structure Constant and the Strong Interaction in 229Th[J]. Physical Review Letters, 2006, 97(9): 092502. doi: 10.1103/PhysRevLett.97.092502 [15] 科睿唯安. Derwent Data Analyze产品简介[EB/OL].台北: 科睿唯安台湾办公室, 2019 (2021-07-26). https://clarivate.com/derwent/zh-hant/download/47820/ .