留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核酸标准物质的研究进展

赵雨佳 廖湉毅 范培蕾 梁亮 赵海波 沈正生

赵雨佳,廖湉毅,范培蕾,等. 核酸标准物质的研究进展[J]. 计量科学与技术,2022, 66(2): 15-20 doi: 10.12338/j.issn.2096-9015.2020.0374
引用本文: 赵雨佳,廖湉毅,范培蕾,等. 核酸标准物质的研究进展[J]. 计量科学与技术,2022, 66(2): 15-20 doi: 10.12338/j.issn.2096-9015.2020.0374
ZHAO Yujia, LIAO Tianyi, FAN Peilei, LIANG Liang, ZHAO Haibo, SHEN Zhengsheng. A Perspective on Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2022, 66(2): 15-20. doi: 10.12338/j.issn.2096-9015.2020.0374
Citation: ZHAO Yujia, LIAO Tianyi, FAN Peilei, LIANG Liang, ZHAO Haibo, SHEN Zhengsheng. A Perspective on Nucleic Acid Reference Materials[J]. Metrology Science and Technology, 2022, 66(2): 15-20. doi: 10.12338/j.issn.2096-9015.2020.0374

核酸标准物质的研究进展

doi: 10.12338/j.issn.2096-9015.2020.0374
基金项目: 国家重点研发计划(2019YFF0216703);第66批中国博士后科学基金(2019M660539)。
详细信息
    作者简介:

    赵雨佳(1989-),北京市计量检测科学研究院博士后,研究方向:核酸计量、病原微生物检测方法等,邮箱:zhaoyj@bjjl.cn

    通讯作者:

    沈正生(1961-),北京市计量检测科学研究院教授级高工,研究方向:化学计量,邮箱:shenzs@bjjl.cn

A Perspective on Nucleic Acid Reference Materials

  • 摘要: 核酸是遗传信息的载体,随着以核酸扩增为基础的体外诊断技术的快速发展,核酸检测被广泛应用于医学诊断、法医鉴定、进出口检验检疫以及物种进化研究等领域。核酸标准物质是保证核酸检测结果准确性和溯源性的“金标准”,WHO和我国国家市场监督管理总局均规定,体外诊断试剂需使用国际、国家标准物质或厂级标准品对其准确性进行溯源。HER2BRAFEGFR等基因突变致癌机制的解析促使曲妥珠单抗、威罗菲尼、美罗华等一系列靶向治疗药物上市,导致我国核酸标准物质面临很大缺口。由于核酸具有结构复杂、易降解和分子量大等特点,难以满足均匀性和稳定性要求,因此核酸标准物质的研制进展缓慢。本文对核酸标准物质的制备方法及国内外研究进展进行简要综述,为高效研制体外诊断用核酸标准物质提供参考。
  • 图  1  核酸标准物质的标称特性和量值

    Figure  1.  Properties of nucleic acid reference materials

    图  2  核酸标准物质的分类

    Figure  2.  Classification of nucleic acid reference materials

    图  3  BRAF基因V600E突变基因组DNA标准物质的制备流程

    Figure  3.  The procedure for developing BRAF V600E nucleic acid reference materials

    图  4  国家有证核酸标准物质的组成

    Figure  4.  The constitution of certified nucleicacid reference materials

    表  1  在售有证核酸标准物质

    Table  1.   The certified nucleic acid reference materials on sale

    标物名称编号标准值定值方法
    猪繁殖与呼吸综合征病毒美洲经典株
    (PRRSV CH-1a)质粒核酸标准物质
    GBW(E)091038(9.4±0.9)×108 copy/μL数字PCR
    猪繁殖与呼吸综合征病毒美洲变异株
    (PRRSV HuN4)质粒核酸标准物质
    GBW(E)091039(7.8±1.0)×108 copy/μL数字PCR
    新型冠状病毒核酸标准物质(高浓度)GBW(E)091089E基因(7.05±0.54)×105 copy/μL数字PCR
    ORF1ab(1.10±0.12)×106 copy/μL
    N基因(8.38±0.76)×105 copy/μL
    新型冠状病毒核酸标准物质(低浓度)GBW(E)091090E基因(7.63±0.66)×102 copy/μL数字PCR
    ORF1ab(1.24±0.19)×103 copy/μL
    N基因(9.8±1.2)×102 copy/μL
    新型冠状病毒核糖核酸基因组标准物质GBW(E)091098E基因(1.29±0.26)×102 copy/μL数字PCR
    ORF1ab(9.5±1.8)×103 copy/μL
    N基因(2.05±0.31)×102 copy/μL
    新型冠状病毒核糖核酸基因组标准物质GBW(E)091099E基因(1.06±0.11)×103 copy/μL数字PCR
    ORF1ab(8.96±0.61)×102 copy/μL
    N基因(1.73±0.13)×103 copy/μL
    KRAS(G12A)基因突变丰度标准物质(突变丰度67.3%)GBW09841G12A突变丰度(67.3±2.0)%数字PCR
    KRAS(G12D)基因突变丰度标准物质(突变丰度47.7%)GBW09842G12D突变丰度(47.7±3.0)%数字PCR
    KRAS(G12R)基因突变丰度标准物质(突变丰度51.8%)GBW09843G12R突变丰度(51.8±3.0)%数字PCR
    KRAS(G12C)基因突变丰度标准物质(突变丰度100%)GBW09844G12C突变丰度(100±2.0)%数字PCR
    KRAS(G12S)基因突变丰度标准物质(突变丰度100%)GBW09845G12S突变丰度(100±2.0)%数字PCR
    KRAS(G12V)基因突变丰度标准物质(突变丰度100%)GBW09846G12V突变丰度(100±2.0)%数字PCR
    KRAS(G13D)基因突变丰度标准物质(突变丰度50.4%)GBW09847G13D突变丰度(50.4±3.0)%数字PCR
    KRAS基因7种突变丰度标准物质(1%水平)GBW09848G12A(1.0±10)%数字PCR
    G12D(1.0±10)%
    G12R(1.0±11)%
    G12C(1.0±9)%
    G12S(1.0±9)%
    G12V(1.0±9)%
    G13D(1.0±8)%
    KRAS基因7种突变丰度标准物质(5%水平)GBW09849G12A(5.0±7)%数字PCR
    G12D(5.0±7)%
    G12R(5.0±7)%
    G12C(5.1±8)%
    G12S(4.9±10)%
    G12V(5.0±8)%
    G13D(5.0±7)%
    转基因玉米NK603质粒分子标准物质[19]GBW10086测序比值1.0±0.04测序法
    数字PCR
    PCR比值0.97±0.09
    分子浓度(2.40±0.14)×108 copy/μL
    转基因水稻BT63质粒分子标准物质[20]GBW10090测序比值1.0±0.07测序法
    数字PCR
    PCR比值1.0±0.08
    分子浓度8.9×105copy/μL
    转基因大豆MON89788质粒分子标准物质[21]GBW10092测序比值1.00±0.04测序法
    数字PCR
    PCR比值1.01±0.09
    分子浓度4.02×105copy/μL
    320bp寡聚DNA含量标准物质GBW09804(110.6±7.1)mg/gICP-MS
    转基因BT63水稻种子粉基体标准物质[22]GBW10070(0.50±0.04)×10−2 mg/g
    (0.51±0.07)×10−8 copy/μL
    重量法
    数字PCR
    转基因BT63水稻种子粉基体标准物质[22]GBW10071(1.01±0.07)×10−2 mg/g
    (1.00±0.13)×10−8 copy/μL
    重量法
    数字PCR
    转基因BT63水稻种子粉基体标准物质[22]GBW10072(2.01±0.11)×10−2 mg/g
    (1.91±0.25)×10−8 copy/μL
    重量法
    数字PCR
    转基因BT63水稻种子粉基体标准物质[22]GBW10073(5.03±0.35)×10−2 mg/g
    (4.31±0.58)×10−8 copy/μL
    重量法
    数字PCR
    下载: 导出CSV
  • [1] WATSON J D, CRICK F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1974, 248(5451): 765. doi: 10.1038/248765a0
    [2] PAI-DHUNGAT J. Kary mullis-inventor of PCR[J]. J. Assoc. Physicians. India., 2019, 67(9): 96.
    [3] KAZUYUKI M. PCR-based detection methods for single-nucleotide polymorphism or mutation: real-time pcr and its substantial contribution toward technological refinement[J]. Adv. Clin. Chem, 2017, 80: 45-72.
    [4] BEATA K, JÓZEF K, KAROLINA S, et al. Principles and applications of ligation mediated pcr methods for dna-based typing of microbial organisms[J]. Acta. Biochim. Pol, 2016, 63(1): 39-52.
    [5] HAPUARACHCHI C T, KATIE J M, BOWLER J W. Stool PCR may not be a substitute for enrichment culture for the detection of salmonella[J]. J. Med. Microbiol, 2019, 68(3): 395-397.
    [6] AMOUPOUR M, NEZAMZADEH F, BIALVAEI A Z, et al. Differentiation of Brucella abortus and B. melitensis biovars using PCR-RFLP and REP-PCR[J]. New Microbes New Infect, 2019, 32: 100589.
    [7] EHNERT S, LINNEMANN CAREN, BRAUN B, et al. One-step arms-pcr for the detection of snps-using the example of the padi4 gene[J]. Methods Protoc, 2019, 2(3): 63. doi: 10.3390/mps2030063
    [8] ROMSOS E L, VALLONE P M. Rapid pcr of str markers: applications to human identification[J]. Forensic. Sci. Int. Genet, 2015, 18: 90-99. doi: 10.1016/j.fsigen.2015.04.008
    [9] DAHIYA B, MEHTA P K. Detection of potential biomarkers associated with outrageous diseases and environmental pollutants by nanoparticle-based immuno-PCR assays[J]. Anal. Biochem., 2019, 587: 113444. doi: 10.1016/j.ab.2019.113444
    [10] MAGYAR T, GYURIS É, UJVÁRI B, et al. Genotyping of riemerella anatipestifer by eric-pcr and correlation with serotypes[J]. Avian. Pathol, 2019, 48(1): 12-16.
    [11] CHEN H. Microfluidics-based pcr for fusion transcript detection[J]. Methods Mol. Biol., 2016, 1392: 103-111.
    [12] KAKIZAWA S. A multiplex-pcr method for diagnosis of ay-group phytoplasmas[J]. Methods Mol. Biol, 2019, 1875: 143-149.
    [13] DAS S, RAY U, AKHTER I, et al. Evaluation of fliC-d based direct blood PCR assays for typhoid diagnosis[J]. BMC Microbiol, 2016, 16(1): 108. doi: 10.1186/s12866-016-0723-6
    [14] NIBA E T E, ROCHMAH M A, HARAHAP N I F, et al. Spinal muscular atrophy: new screening system with real-time mcop-pcr and pcr-rflp for smn1 deletion[J]. Kobe. J. Med. Sci., 2019, 65(2): 44-48.
    [15] HUALAN Z, YAN L, PEI W. Development of sybr green real-time pcr and nested rt-pcr for the detection of potato mop-top virus (pmtv) and viral surveys in progeny tubers derived from pmtv infected potato tubers[J]. Mol. Cell Probes, 2019, 47: 101438. doi: 10.1016/j.mcp.2019.101438
    [16] KOLTAS I S, EROGLU F, UZUN S, et al. A comparative analysis of different molecular targets using PCR for diagnosis of old world leishmaniasis[J]. Exp. Parasitol., 2016, 164: 43-48. doi: 10.1016/j.exppara.2016.02.007
    [17] HUILLIER A G L, LOMBOS E, TANG E, et al. Evaluation of altona diagnostics realstar zika virus reverse transcription-pcr test kit for zika virus pcr testing[J]. J. Clin. Microbiol, 2017, 55(5): 1576-1584. doi: 10.1128/JCM.02153-16
    [18] QIANWANG Z, MARTA M K. Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts[J]. Int. J. Food Microbiol., 2016, 222: 48-55. doi: 10.1016/j.ijfoodmicro.2016.01.013
    [19] 董莲华, 李亮, 王晶. 转基因玉米pNK603质粒分子的构建与应用[J]. 农业生物技术学报, 2011, 19(5): 565-570.
    [20] WU G, WU Y, NIE S, et al. Real-time PCR method for detection of the transgenic rice event TT51-1[J]. Food Chemistry, 2010, 119(1): 417-422. doi: 10.1016/j.foodchem.2009.08.031
    [21] DELOBEL C, NOENS W, QUERCI M, et al. Event-specific method for the quantification of soybean line mon89788 using real-time PCR: validation report[R]. Joint Research Centre, Institute for Health and Consumer Protection, 2008.
    [22] 隋志伟, 余笑波, 王晶, 等. 转基因水稻TT51-1标准物质的研制[J]. 计量学报, 2012, 33(5): 5.
    [23] 陈桂芳, 欧阳艳艳, 杨佳怡, 等. 核酸标准物质测量方法研究进展[J]. 计量科学与技术, 2021, 65(6): 25-33. doi: 10.12338/j.issn.2096-9015.2020.9022
    [24] 赵雨佳, 范培蕾, 梁亮, 等. 转基因作物的发展与检测分析[J]. 计量技术, 2019(10): 54-57.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  45
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-01-15
  • 刊出日期:  2022-02-18

目录

    /

    返回文章
    返回