Analysis of Measurement Methods for Maximum Equivalent Isotropic Radiated Power of New-Generation Public WLAN Equipment
-
摘要: 无线通信技术和标准在不断演进升级,通信标准的升级带来了信号波形的改变,进而要求信号的测试方法作出相应变化。最大等效全向辐射功率是无线设备型号核准中最为关键的测试参数,针对新一代公众无线局域网信号高带宽同时具有一定占空比的特性,着重分析了新一代公众无线局域网设备最大等效全向辐射功率测试方法,提出了时域直接测试法和频域触发法,并对两种测试方法进行了对比分析。进一步地,针对型号核准测试一致性的需求,基于实际测量,呈现了两款不同厂家主流仪表的测量结果,并对测量结果的差异进行分析。在此基础上,对新一代无线局域网设备最大等效全向辐射功率参数进行了系统测试和深入分析,这些测试和分析将为无线局域网设备测试标准的完善提供坚实的技术基础。Abstract: The wireless communication technology and standards are constantly evolving. Upgrading of the standards has brought changes in signal waveforms, which requires improvement in corresponding measurement methods. The maximum Equivalent Isotropic Radiated Power (EIRP) is the most important measurement parameter in type approval of radio transmission equipment. This paper focuses on the analysis of maximum EIRP measurement methods for the new generation of public Wireless Local Area Network (WLAN) equipment. The measured signals have a high bandwidth and a certain duty cycle. This paper proposes a time-domain measurement method and a frequency-domain trigger method. The two methods were compared and analyzed. To check measurement consistency, two widely used instruments from different manufacturers were measured. Systematic measurements and an in-depth analysis were conducted on the maximum EIPR of the instruments. The measurements and analysis can shed light on improvement in WLAN equipment measurement standards.
-
Key words:
- WLAN /
- EIRP /
- type approval /
- high bandwidth /
- duty cycle /
- measurement consistency
-
表 1 不同型号仪表测试结果比对分析
Table 1. Comparison of the results measured by two instruments
频率(MHz) 带宽(MHz) 宽带信号测量
结果(dBm)载波测量结
果(dBm)MXA FSW MXA FSW 5180 20 8.50 8.02 12.27 12.23 5310 40 8.95 10.06 10.04 11.01 5290 80 10.88 11.90 10.99 11.97 5250 160 9.43 9.76 11.47 11.92 -
[1] 杨晓娇, 易继明. 5G发展关键性战略资源管理与技术治理制度研究[J]. 中共中央党校(国家行政学院)学报, 2019, 23(6): 31-36. [2] 方双凤, 高雅玙, 黑晓军. 在非授权频段下实现LTE-U与Wi-Fi网络的公平共存[J]. 小型微型计算机系统, 2019, 40(12): 2566-2570. [3] 关玉莲. 无线电频谱监测统计工作信息化需求分析[J]. 中国无线电, 2020(9): 48-50. [4] 李岳洪, 刘泳海, 吴敏. 国内智能家用电器无线电发射模块型号核准分析[J]. 日用电器, 2017, 144(12): 19-23. [5] 靳亚娜. 无线电发射设备型号核准[J]. 中国无线电, 2018, 275(7): 42. [6] 武彤. 移动通信终端电磁辐射测试方法探讨[J]. 中华环境, 2016(1): 75-75. [7] 王文玲. 无线局域网设备的射频指标及检测方法[J]. 通讯世界, 2017(8): 8-9. [8] 冯蕾洁. 5GHz无线局域网终端射频自动测试系统的设计和实现[D]. 太原: 太原理工大学, 2014. [9] Rahbari H, Krunz M. Exploiting Frame Preamble Waveforms to Support New Physical-Layer Functions in OFDM-Based 802.11 Systems[J]. IEEE Transactions on Wireless Communications, 2017(16): 3775-3786. [10] Tuysuz M F. Towards providing optimal energy‐efficiency and throughput for IEEE 802.11 WLANs[J]. International journal of communication systems, 2018, 31(13): e3725.1-e3725.25. [11] Zhou X, Zhong Z, Bian X, et al. Measurement and analysis of channel characteristics in reflective environments at 3.6 GHz and 14.6 GHz[J]. Applied Sciences, 2017, 7(2): 165. doi: 10.3390/app7020165 [12] 周鑫, 赵海宁, 何昭, 等. WCDMA数字移动通信系统信道化原理及其在计量中的应用[J]. 仪器仪表学报, 2007, 000(S1): 352-356. [13] 周鑫, 卞昕, 赵海宁, 等. 对蓝牙信号调制质量参数测量结果的分析[J]. 计量技术, 2010(7): 17-19. [14] 赵海宁, 侯立新, 周鑫. 峰值功率计校准方法的研究[J]. 计量学报, 2012, 33(6): 550-554. [15] D. Moongilan, EIRP, TRP, Partial TRP and Radiated Immunity For 5G millimeter Wave Device Compliance[C]. 2018 IEEE 5G World Forum (5GWF), Silicon Valley, Canada, 2018: 60-64.