留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超稳激光技术及其在锶光钟研究中的实现

李烨 林弋戈 王强 杨涛 孙震 卢炳坤 方占军

李烨,林弋戈,王强,等. 超稳激光技术及其在锶光钟研究中的实现[J]. 计量科学与技术,2021, 65(5): 62-66 doi: 10.12338/j.issn.2096-9015.2020.9018
引用本文: 李烨,林弋戈,王强,等. 超稳激光技术及其在锶光钟研究中的实现[J]. 计量科学与技术,2021, 65(5): 62-66 doi: 10.12338/j.issn.2096-9015.2020.9018
LI Ye, LIN Yige, WANG Qiang, YANG Tao, SUN Zhen, LU Bingkun, FANG Zhanjun. Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock[J]. Metrology Science and Technology, 2021, 65(5): 62-66. doi: 10.12338/j.issn.2096-9015.2020.9018
Citation: LI Ye, LIN Yige, WANG Qiang, YANG Tao, SUN Zhen, LU Bingkun, FANG Zhanjun. Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock[J]. Metrology Science and Technology, 2021, 65(5): 62-66. doi: 10.12338/j.issn.2096-9015.2020.9018

超稳激光技术及其在锶光钟研究中的实现

doi: 10.12338/j.issn.2096-9015.2020.9018
基金项目: 国家重点研究发展计划(2016YFF0200201,2017YFA0304404);国家自然科学基金资助项目(91736310)
详细信息
    作者简介:

    李烨(1980-),中国计量科学研究院副研究员,研究方向:超稳激光,邮箱:yeli@nim.ac.cn

Ultra-Stable Laser Technology and its Realization in Strontium Optical Lattice Clock

  • 摘要: 中国计量科学研究院于2008年、2011年和2018年先后研制了百赫兹、赫兹和亚赫兹量级的超稳激光系统。本文主要介绍各种指标的超稳激光实现的途径及条件,论述参考腔、快速反馈锁定技术及如何运用精密控制技术抑制外界环境对参考腔腔长的影响,获得10−15或更高频率稳定度的超稳激光。从实验上将半导体激光器稳定锁定到30 cm长的高精细度ULE参考腔上,实现了频率稳定度3×10−16的超稳激光。
  • 图  1  PDH稳频技术原理

    P: 起偏器;EOM:电光相位调制器;PBS: 偏振分光镜;λ/4:四分之一波片;PD:高速光电探测器;DBM:双平衡混频器;LO:本振信号源;PS:移相器

    Figure  1.  The scheme of PDH technique

    图  2  30 cm长参考腔及底座

    Figure  2.  30-cm-long ULE cavity and its supporting base

    图  3  容纳长参考腔的真空系统

    Figure  3.  The vacuum chamber with the long reference cavity

    图  4  分时自比较测量得到的频率稳定度

    Figure  4.  Frequency stability evaluation with the interleaved measurement

  • [1] Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 2011, 5(7): 425-429. doi: 10.1038/nphoton.2011.121
    [2] Abbott B P, Abbott R, Abbott T D, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [3] Predehl K, Schnatz H. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place[J]. Science, 2012, 336(6080): 441. doi: 10.1126/science.1218442
    [4] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [5] Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser[J]. Applied Physics B, 2006, 83(4): 531-536. doi: 10.1007/s00340-006-2225-y
    [6] Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 30(5): 053801.
    [7] Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15[J]. Optics Letters, 2007, 32(6): 641-643. doi: 10.1364/OL.32.000641
    [8] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10−16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161. doi: 10.1038/nphoton.2010.313
    [9] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692. doi: 10.1038/nphoton.2012.217
    [10] Häfner S, Falke S, Grebing C, et al. 8×10−17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112. doi: 10.1364/OL.40.002112
    [11] Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 116: 263202.
    [12] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [13] Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level[J]. Journal of the Optical Society of America B Optical Physics, 1988, 5(4): S28.
    [14] Birch K P, Downs M J. Correction to the Updated Edlén Equation for the Refractive Index of Air[J]. Metrologia, 2005, 31(4): 315-316.
    [15] Roberts M, Taylor P, Gill P. Laser linewidth at the sub-Hertz level[R]. United Kingdom: British Library Document Supply Centre, 1999.
    [16] Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 2007, 75(1): 10064-10070.
    [17] Millo J, Magalhaes D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities[J]. Physical Review A, 2009, 79(5): 1744-1747.
    [18] Li Ye, Lin Yi-Ge, Wang Qiang, et al. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chinese Physics Letter, 2014, 31(2): 024207. doi: 10.1088/0256-307X/31/2/024207
    [19] Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors[J]. Journal of the Optical Society of America B, 2010, 27: 914. doi: 10.1364/JOSAB.27.000914
    [20] Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779. doi: 10.1364/OL.19.001777
  • 加载中
图(4)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  249
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回