留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波频段材料介电特性计量研究

郭闻 徐浩 梁伟军 刘科 贾超 高秋来

郭闻,徐浩,梁伟军,等. 毫米波频段材料介电特性计量研究[J]. 计量科学与技术,2021, 65(5): 14-19, 45 doi: 10.12338/j.issn.2096-9015.2020.9020
引用本文: 郭闻,徐浩,梁伟军,等. 毫米波频段材料介电特性计量研究[J]. 计量科学与技术,2021, 65(5): 14-19, 45 doi: 10.12338/j.issn.2096-9015.2020.9020
GUO Wen, XU Hao, LIANG Weijun, LIU Ke, JIA Chao, GAO Qiulai. Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range[J]. Metrology Science and Technology, 2021, 65(5): 14-19, 45. doi: 10.12338/j.issn.2096-9015.2020.9020
Citation: GUO Wen, XU Hao, LIANG Weijun, LIU Ke, JIA Chao, GAO Qiulai. Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range[J]. Metrology Science and Technology, 2021, 65(5): 14-19, 45. doi: 10.12338/j.issn.2096-9015.2020.9020

毫米波频段材料介电特性计量研究

doi: 10.12338/j.issn.2096-9015.2020.9020
基金项目: 国家自然科学基金青年基金资助项目(11802300);国家科技部重点研发计划项目(2017YFF0204704)
详细信息
    作者简介:

    郭闻(1997-),中国计量科学研究院硕士研究生,研究方向:材料高频电磁参数计量,邮箱:guowen@nim.ac.cn

    通讯作者:

    徐浩(1990-),中国计量科学研究院副研究员,研究方向:材料高频电磁参数计量,邮箱:xuhao@nim.ac.cn

Measurement of Dielectric Properties of Materials in Millimeter-Wave Frequency Range

  • 摘要: 系统地开展了毫米波频段材料复介电常数的测量方法研究。基于自由空间法采用两步校准方法和时域选通技术,实现了75~110 GHz宽频范围内材料介电特性的测量表征,并基于准光Fabry-Perot谐振原理,研制具有高品质因数的开放式谐振腔,利用高斯波束理论建立了材料介电特性的反演模型,尤其适用于低损耗介质材料的准确测量。通过对比聚氯乙烯(PVC)与熔融石英材料的测量结果,验证了两种测量方法的一致性。此外,针对多层材料提出了去嵌入测量算法,实现了液晶材料各向异性介电常数的表征。
  • 图  1  自由空间法实验装置示意图

    Figure  1.  Scheme of the measurement setup for the free-space method

    图  2  自由空间法测量结果

    Figure  2.  Measurement results of the free-space method

    图  3  准光开放式谐振腔法实验装置示意图

    Figure  3.  Scheme of the measurement setup for the quasi-optical open resonant cavity method

    图  4  两种方法的测试结果比对

    Figure  4.  Comparison of the measurement results between the two methods

    图  5  定向排列的液晶样品与在电场下测量示意图

    Figure  5.  Scheme of oriented liquid crystal sample with measurements under electric field

    图  6  液晶样品垂直介电常数($ {\varepsilon }_{{\rm{r}}\perp } $)与平行介电常数($ {\varepsilon }_{{\rm{r}}\parallel } $)

    Figure  6.  The perpendicular ($ {\varepsilon }_{{\rm{r}}\perp } $) and parallel ($ {\varepsilon }_{{\rm{r}}\parallel } $) permittivity of LC

  • [1] WAYNE M, ALEXANDER S. Optimising a modified free-space permittivity characterisation method for civil engineering applications[J]. Journal of Geophysics & Engineering, 2016, 13(2): S9-S18.
    [2] KULKARNI S, JOSHI M S. Design and analysis of shielded vertically stacked ring resonator as complex permittivity sensor for petroleum oils[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 1-7. doi: 10.1109/TMTT.2015.2458578
    [3] COSTA J R, FERNANDES C A, GODI G, et al. Compact Ka-band lens antennas for LEO satellites[J]. IEEE Transactions on Antennas & Propagation, 2008, 56(5): 1251-1258.
    [4] WU X, ELEFTHERIADES G V, VAN DEVENTER-PERKINS T E. Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(3): 431-441. doi: 10.1109/22.910546
    [5] NORA M N H, FUGE G, TRIEU H K, et al. Miniaturized transmission-Line sensor for broadband dielectric characterization of biological liquids and cell suspensions[J]. IEEE Transactions on Microwave Theory & Techniques, 2015, 63(10): 3026-3033.
    [6] 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013, 8-10.
    [7] HUBER O, FASETH T, MAGERL G, et al. Dielectric characterization of RF-Printed circuit board materials by microstrip transmission lines and conductor-backed coplanar waveguides up to 110 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 237-244. doi: 10.1109/TMTT.2017.2750152
    [8] AWANG Z, ZAKI F A M, BABA N H, et al. A free-space method for complex permittivity measurement of bulk and thin film di-electrics at microwave frequencies[J]. 2013, 51: 307-328.
    [9] AFSAR M N, DING H. A novel open-resonator system for precise measurement of permittivity and loss-tangent[J]. IEEE Transactions on Instrumentation & Measurement, 2001, 50(2): 402-405.
    [10] 胡大海, 赵锐, 杜刘革, 等. 太赫兹平板材料介电常数测试技术[J]. 微波学报, 2016, 32(5): 1-5.
    [11] 唐宗熙, 张彪. 用自由空间法测试介质电磁参数[J]. 电子学报, 2006, 34(1): 189-192.
    [12] NICOLSON A M, ROSS G F. Measurement of the intrinsic properties of materials by time-domain techniques[J]. IEEE Transactions on Instrumentation & Measurement, 1970, 19(4): 377-382.
    [13] 郭高凤, 李恩, 张其劭, 等. 3 mm准光腔内场和能量分布的模拟计算[J]. 电子学报, 2001, 29(7): 1000-1002.
    [14] KOMIYAMA B, KIYOKAWA M, MATSUI T. Open resonator for precision dielectric measurements in the 100 GHz band[J]. IEEE Transactions on Microwave Theory & Techniques, 1991, 39(10): 1792-1796.
    [15] YU P K, CULLEN A L. Measurement of permittivity by jeans of an open resonator. I. theoretical[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1982, 380(1778): 49-71.
    [16] Darko K. Linear fractional curve fitting for measurement of high Q factors[J]. IEEE Transactions on Microwave Theory & Techniques, 1994, 42(7): 1149-1153.
    [17] JUAN R S, NOVA V, BACHILLER C, et al. Characterization of nematic liquid crystal at microwave frequencies using split-cylinder resonator method[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 2812-2820. doi: 10.1109/TMTT.2019.2916790
    [18] 葛忆, 叶明旭, 杨军, 等. 液晶介电常数在微波至太赫兹频段测试技术[J]. 电子科技, 2017, 30(4): 123-127.
    [19] Havrilla M J, Nyquist D P. Electromagnetic characterization of layered materials via direct and de-embed methods[J]. IEEE Transactions on Instrumentation & Measurement, 2006, 55(1): 158-163.
  • 加载中
图(6)
计量
  • 文章访问数:  1316
  • HTML全文浏览量:  618
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-28

目录

    /

    返回文章
    返回