Research Progress on Common Measurement Methods of Nucleic Acid Reference Materials
-
摘要: 为提高核酸测量的准确性,种类繁多的核酸标准物质被研制出来。标准物质是保证量值准确性与可溯源性的“计量器具”,具有复现、保存和传递量值的功能,可以为核酸定性与定量检测过程的质量控制提供参考。准确可靠的定值方法是标准物质研制的重要基础,详细介绍了几种核酸标准物质测量方法,重点分析了不同测量方法的原理与应用特点,讨论了测量过程中可能存在的影响因素,为核酸标准物质的深入研究提供参考。Abstract: A great variety of nucleic acid reference materials have been developed to improve the accuracy of nucleic acid measurement. A reference material is a “measuring instrument” that can ensure the accuracy and traceability of measurement, with the functions of reproducing, preserving, and disseminating measurement values. Reference materials can provide a frame of reference for quality control of qualitative and quantitative detection processes for nucleic acid. Accurate and reliable certification methods are an important basis for the development of reference materials. This article provides details on several methods of measuring nucleic acid reference materials, with a focus on the principles and application characteristics of the methods and a discussion on influencing factors that may affect the measurement.
-
Key words:
- DNA /
- RNA /
- reference material /
- measurement methods
-
表 1 核酸标准物质定量技术
Table 1. Quantification techniques for nucleic acid reference materials
定量方法 定量原理 优势 不足 定量范围 紫外分光光度法 利用核酸在260 nm的紫外吸收对标准物质进行定值 快速简单;可用于检验样品纯度 影响因素多(pH缓冲液等) 重复性差 (5~50)μg/mL 荧光染料 已知浓度的标准物质作为外标,通过绘制标准曲线得到未知样品的量值 快速简单;检测仪器方便 需工作标准物质且染料对温度敏感,需避光孵育检测 (0.05~1)μg/mL 实时荧光定量PCR 已知浓度的标准物质作为外标,通过绘制标准曲线得到未知样品的量值 定量范围广;序列特异性 需工作标准物质 (10~109)copies/μL 数字PCR 直接计数目标分子数,不依靠任何校准物或外标 序列特异性;低浓度定量;不依赖标准物质 操作过程较复杂 (10~105)copies/μL 质谱-磷元素定量 定量磷含量,进而定量核酸 高精度定量;量值可溯源国际单位制基本单位 纯度要求极高,操作条件要求高 >5 ng/mL 同位素稀释质谱-核苷酸定量 同位素标记得不同质荷比(m/z),检测核苷酸等小分子,进而计算核酸含量 可以不依赖标准物质;量值可溯源国际单位制基本单位 前处理复杂且受水解效率影响,纯度要求高 (20~100) ng/mL 流式细胞术 以计数方法定量荧光标记的核酸 适合低浓度定量;不依赖标准物质 检测仪器要求高,需高分辨的成像仪器 ~103 copies/μL -
[1] SOMANATH B, NATALIE C, THOMAS M, et al. Comparison of Methods for Accurate Quantification of DNA Mass Concentration with Traceability to the International System of Units[J]. Analytical Chemistry, 2010, 82(17): 7185-7192. doi: 10.1021/ac100845m [2] HOLDEN M J, HAYNES R J, RABB S A, et al. Factors Affecting Quantification of Total DNA by UV Spectroscopy and PicoGreen Fluorescence[J]. J Agric Food Chem, 2009, 57(16): 7221-7226. doi: 10.1021/jf901165h [3] WILKINSON D E, BAYLIS S A, PADLEY D, et al. Establishment of the 1st World Health Organization international standards for human papillomavirus type 16 DNA and type 18 DNA[J]. International Journal of Cancer, 2010, 126(12): 2969-2983. [4] DUAN Y, CHEN R, Wu X, et al. Preparation of Reference Materials Used for Detecting Nucleic Acids of Nervous Necrosis Virus[J]. China Animal Health Inspection, 2018, 35(2): 102-107. [5] 李春, 刘建涛, 高运华, 等. 紫外分光光度法测定核酸含量的影响因素分析[J]. 化学试剂, 2020, 42(1): 53-57. [6] XIA C S, FEN Z Y. Application of Molecular Absorption Spectrophotometric Method to the Determination of Biologic Macromolecular Structures[J]. Spectroscopy Spectral Analysis, 2004(10): 1197-1201. [7] OKAMOTO T, OKABE S. Ultraviolet absorbance at 260 and 280 nm in RNA measurement is dependent on measurement solution[J]. International Journal of Molecular Medicine, 2000, 5(6): 657-666. [8] LI Z X, YANG R, JIN S S, et al. Factor analysis of effect on purity of RNA extracted by TRIzol[J]. Journal of Xinxiang Medical University, 2016, 33(8): 653-656, 661. [9] RENGARAJAN K, CRISTOL S M, MEHTA M, et al. Quantifying DNA concentrations using fluorometry: a comparison of fluorophores[J]. Molecular Vision, 2002(8): 416-421. [10] SINGER V L, JONES L J, YUE S T, et al. Characterization of PicoGreen Reagent and Development of a Fluorescence-Based Solution Assay for Double-Stranded DNA Quantitation[J]. Anal Biochem, 1997, 249(2): 228-238. doi: 10.1006/abio.1997.2177 [11] L J J. RNA quantitation by fluorescence-based solution assay: RiboGreen reagent characterization[J]. Analytical Biochemistry, 1998, 265(2): 368-374. doi: 10.1006/abio.1998.2914 [12] XIN L, XU G M, GUO J F, et al. A Method for Quantification of Double Strand DNA Using SYBR Green I Dye[J]. China Biotechnology, 2008, 28(1): 55-60. [13] HUGGETT J, BUSTIN S A. Standardisation and reporting for nucleic acid quantification[J]. Accreditation & Quality Assurance, 2011, 16(8-9): 399-405. [14] BUSTIN, S. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. doi: 10.1677/jme.0.0290023 [15] JIANG L L, WANG H L, WANG X L, et al. Establishment of a national grade Ⅱ reference material for HBV DNA[J]. Laboratory Medicine, 31(8): 703-708. [16] YAO L, ZHANG Q, LI F L, et al. Construction, Purification and Quantification of Multiplex Armored RNA Containing Targets for Detection of 4 Foodborne Viruses[J]. Food Science, 2019, 40(8): 293-299. [17] Pavšič J, Žel J, Milavec M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification[J]. Analytical and Bioanalytical Chemistry, 2016, 408(1): 107-121. doi: 10.1007/s00216-015-9107-2 [18] PINHEIRO L B, COLEMEN V A, HINDSON C M, et al. Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification[J]. Analytical Chemistry, 2011, 84(2): 1003-1011. [19] ZHU Q Y, YANG W X, GAO Y B, et al. Microfluidic Digital Chip for Absolute Quantification of Nucleic Acid Amplification[J]. Chemical Journal of Chinese Universities, 2013, 34(3): 545-350. [20] BHAT S, EMSLIE K R. Digital polymerase chain reaction for characterisation of DNA reference materials[J]. Biomolecular Detection and Quantification, 2016(10): 47-49. [21] HAYNES R J, KLINE M C, TOMAN B, et al. Standard Reference Material 2366 for Measurement of Human Cytomegalovirus DNA[J]. Journal of Molecular Diagnostics, 2013, 15(2): 177-185. doi: 10.1016/j.jmoldx.2012.09.007 [22] YUAN L, LI E H, DONG H, et al. Establishment of the national nucleic acid reference material of HP-PRRSV[J]. Animal Husbandry Veterinary Medicine, 2018, 39(5): 826-829. [23] NOLAN T, HANDS R E, BUSTIN S A. Quantification of mRNA using real-time RT-PCR[J]. Nat Protoc 2006, 1(3): 1559-1582. [24] YAN N C, YI Y J, JING W, et al. Effect of Reverse Transcription Process on Quantitive Detection of Porcine Reproductive and Respiratory Syndrome virus[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(2): 80-85. [25] GRIFFITHS K R, BURKE D G, EMSLIE K R. Quantitative polymerase chain reaction: A framework for improving the quality of results and estimating uncertainty of measurement[J]. Analytical Methods, 2011, 3(10): 2201-2211. doi: 10.1039/c1ay05069a [26] HUGGETT J F, NOVAK T, GARSON J A, et al. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon[J]. BMC Research Notes, 2008, 1(1): 70-70. doi: 10.1186/1756-0500-1-70 [27] INCHUL Y. A strategy for establishing accurate quantitation standards of oligonucleotides: quantitation of phosphorus of DNA phosphodiester bonds using inductively coupled plasma-optical emission spectroscopy[J]. Analytical Biochemistry, 2004, 335(1): 150-161. doi: 10.1016/j.ab.2004.08.038 [28] HOLDEN M J, RABB S A, TEWARI Y B, et al. Traceable Phosphorus Measurements by ICP-OES and HPLC for the Quantitation of DNA[J]. Analytical Chemistry, 2007, 79(4): 1536-1541. doi: 10.1021/ac061463b [29] BRENNAN R G, RABB S A, HOLDEN M J, et al. Potential Primary Measurement Tool for the Quantification of DNA[J]. Analytical Chemistry, 2009, 81(9): 3414-3420. doi: 10.1021/ac802688x [30] LECLERC O, FRAISSE P O, LABARRAQUE G, et al. Method development for genomic Legionella pneumophila DNA quantification by inductively coupled plasma mass spectrometry[J]. Anal Biochem, 2013, 435(2): 153-158. doi: 10.1016/j.ab.2012.12.023 [31] GAO Y H, LI H F, LI J X, et al. Quantitative Analysis of Fluorescent Dye-labeled DNA by High Resolution Inductively Coupled Plasma Mass Spectrometry[J]. Chemical Journal of Chinese Universities, 2010, 31(12): 2360-2365. [32] WEN L, YAN L I, LI X U, et al. Quantification of Plasmid DNA Reference Material for Vibrio Cholerae by Using ICP-MS and Digital PCR[J]. Chemical Reagents, 2018, 40(12): 1179-1182. [33] KUNG A W, KILBY P M, PORTWOOD D E, et al. Quantification of dsRNA using stable isotope labeling dilution liquid chromatography/mass spectrometry[J]. Rapid Commun Mass Spectrom, 2018, 32(7): 590-596. doi: 10.1002/rcm.8074 [34] DONG L, ZANG C, WANG J, et al. Lambda genomic DNA quantification using ultrasonic treatment followed by liquid chromatography–isotope dilution mass spectrometry[J]. Analytical Bioanalytical Chemistry, 2012, 402(6): 2079-2088. doi: 10.1007/s00216-011-5644-5 [35] O'CONNOR G, DAWSON C, WOOLFORD A, et al. Quantitation of Oligonucleotides by Phosphodiesterase Digestion Followed by Isotope Dilution Mass Spectrometry: Proof of Concept[J]. Anal Chem, 2002, 74(15): 3670-3676. doi: 10.1021/ac0255375 [36] MENG Z, LIMBACH P A. Quantitation of Ribonucleic Acids Using18O Labeling and Mass Spectrometry[J]. Analytical Chemistry, 2005, 77(6): 1891-1895. doi: 10.1021/ac048801y [37] SHIBAYAMA S, FUJII S-I, INAGAKI K, et al. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification[J]. Journal of Chromatography A, 2016, 1468: 109-115. doi: 10.1016/j.chroma.2016.09.031 [38] SACHIE, SHIBAYAMA, SHIN I, et al. Development of certified reference material NMIJ CRM 6205-a for the validation of DNA quantification methods: accurate mass concentrations of 600-bp DNA solutions having artificial sequences[J]. Analytical & Bioanalytical Chemistry, 2019, 411(23): 6091-6100. [39] Frédéric R, PIROTTE S, PAUW E D, et al. Positive and negative ion mode ESI-MS and MS/MS for studying drug–DNA complexes[J]. International Journal of Mass Spectrometry, 2006, 253(3): 156-171. doi: 10.1016/j.ijms.2005.11.027 [40] LI H, CHANG Y. The Principle of Flow Cytometer and Clinical Application[J]. China Medical Device, 2011, 17(5): 37-39. [41] ZHENG J, YEUNG E S. Counting Single DNA Molecules in a Capillary with Radial Focusing[J]. Australian Journal of Chemistry, 2003, 56(3): 149-153. doi: 10.1071/CH02192 [42] LIM H-M, YOO H B, HONG N S, et al. Count-based quantitation of trace level macro-DNA molecules[J]. Metrologia, 2009, 46(3): 375-387. doi: 10.1088/0026-1394/46/3/028 [43] YOO H B, OH D, SONG J Y, et al. A candidate reference method for quantification of low concentrations of plasmid DNA by exhaustive counting of single DNA molecules in a flow stream[J]. Metrologia, 2014, 51(5): 491-502. doi: 10.1088/0026-1394/51/5/491 [44] YOO H B, LEE C, HONG K S, et al. Quantification of single-strand DNA by sequence-specific counting in capillary flow cytometry[J]. Metrologia, 2020, 57(6): 065019. doi: 10.1088/1681-7575/abb113 [45] YOO H, PARK S R, DONG L, et al. International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction[J]. Anal Chem, 2016, 88(24): 12169. doi: 10.1021/acs.analchem.6b03076 [46] HUSSELS M, ENGEL S, BOCK N. Investigation of direct counting and sizing of DNA fragments in flow applying an improved data analysis and correction method[J]. Biomolecular Detection and Quantification, 2019, 17: 2214-7535.