Application of FTIR in the Research on Gas Reference Materials
-
摘要: 气体标准物质在气体测量领域有广泛的应用,为实现测量结果溯源至国际单位制SI发挥了重要的作用。在气体标准物质研制过程中离不开气体成分的测量,测量方法除了色谱法、质谱法外,光谱法也被广泛应用。傅里叶变换红外光谱(FTIR)是一种光谱测量技术,它可以用于原料气体的纯度分析和气体标准物质特性组分和干扰组分的精确测量。介绍了采用FTIR测量几种原料气体中杂质的应用实例,以及在气体标准物质量值测量和国际比对中的一些应用。研究显示FTIR比较适用于活泼性组分的测量和多组分的同步测量,测量过程操作相对简单,不需要像GC或GCMS那样对色谱柱或者色谱参数进行复杂的优化和控制;FTIR同样适用于稳定性气体的测量,例如在温室气体测量中也可以获得较高的重复性和准确性。除此之外,准确的测量结果与所使用的校准方法有关,使用单点精确匹配校准或双点校准,同时采用“参考-样品-参考”的交替测量序列,可以获得相对准确的测量结果。Abstract: Gas reference materials are widely used in gas measurement and play an important role in achieving traceability of measurement results to the SI units. The measurement of gas composition is indispensable in the development of gas reference materials. Besides chromatography and mass spectrometry, spectroscopy is also widely used. Fourier Transform infrared spectroscopy (FTIR) is a spectrum measurement technology that can be used for purity analysis of raw gases and accurate measurement of characteristic components and interference components of gas reference materials. This paper introduces the applications of FTIR in the measurement of impurities in several kinds of raw gases, and some applications in the property value measurement and international comparison of gas reference materials. The results show that FTIR is more suitable for the measurement of active components and simultaneous measurement of multiple components. The operation of the measurement process is relatively simple and does not require complex optimization and control of the chromatographic column or chromatographic parameters as in GC or GCMS. FTIR is also suitable for the measurement of stable gases. For example, it can obtain high repeatability and accuracy in the measurement of greenhouse gases. This paper points out that the accurate measurement results are related to the calibration method used, and relatively accurate measurement results can be obtained by using single-point exact-match calibration or two-point calibration, with an alternating measurement sequence “reference-sample-reference”.
-
Key words:
- gas /
- reference material /
- Fourier Transform infrared spectroscopy /
- purity /
- target component /
- measurement /
- calibration
-
表 1 各类校准函数推荐的校准点最少数量
Table 1. The minimum calibration point recommended for calibration functions
校准函数类型 推荐的校准点最少数量 线性函数 3 二次多项式 5 三次多项式 7 幂函数 5 指数函数 5 -
[1] 王德发, 叶菁, 王泽璋, 等. 环境对标准气体气瓶质量称量的影响[J]. 计量科学与技术, 2020(10): 22-25. [2] 张雯, 胡德龙. 氮中微量一氧化碳气体标准物质定值影响因素及分析方法的研究[J]. 计量技术, 2014(11): 35-38. doi: 10.3969/j.issn.1000-0771.2014.11.11 [3] 王德发, 韩桥, 张体强, 等. 一种新型汽车排气标准物质的研制[J]. 化学试剂, 2020, 42(4): 420-424. [4] 刘丽华. 氮中氧气体标准物质研制方法[J]. 计量学报, 2010, 31(5A): 80-83. [5] 吴海, 马浩淼, 王振, 等. 氮中氯气标准物质的研制[J]. 计量技术, 2018(1): 6-9. doi: 10.3969/j.issn.1000-0771.2018.01.02 [6] 姚强, 王德发, 盖良京, 等. 电气设备中保护气体监测用SO2F2气体标准物质研制[J]. 计量学报, 2013, 34(6): 607-610. doi: 10.3969/j.issn.1000-1158.2013.06.20 [7] 胡树国, 王德发, 王哲. 微量气体转移技术在重量法制备气体标准物质中的应用[J]. 计量学报, 2013, 34(1): 72-75. doi: 10.3969/j.issn.1000-1158.2013.01.16 [8] 周泽义, 王德发, 胡树国. 挥发性有机物气体标准物质的研制[J]. 计量学报, 2008, 29(4A): 215-221. [9] 高芳, 周泽义, 王德发, 等. VOCs吸附管标准物质的研制[J]. 计量学报, 2009, 30(2): 187-192. [10] 胡树国, 杨圣辉, 吴海, 等. 稀释法发生低含量硫化氢气体方法的研究[J]. 计量学报, 2011, 32(2): 187-192. doi: 10.3969/j.issn.1000-1158.2011.02.20 [11] 欧洲标准化委员会. Gas analysis - Preparation of calibration gas mixtures - Part 1: Gravimetric method for Class I mixtures: ISO 6142-1: 2015[S]. 布鲁塞尔, 2015. [12] 国家市场监督管理总局. 气体分析 校准用混合气体的制备第一部分: 称量法制备一级混合气体: GB/T 5274.1-2018[S]. 北京, 2018. [13] Yang I, Lee J, Moon D, et al. Preparation of Primary Reference Material of Argon in Oxygen by the Gravimetric Method for Application to Thermometry[J]. Metrologia, 2017, 54(2): 184-192. doi: 10.1088/1681-7575/aa5894 [14] van der Veen A M H, Hafner K. Atomic Weights in Gas Analysis[J]. Metrologia, 2014, 51(1): 80-86. doi: 10.1088/0026-1394/51/1/80 [15] Bi Z, Zhou Z, Wang X, et al. The Impact of Raw Material Purity on R142b Standard Gas Mixture Preparation[J]. Advanced Materials Research, 2014, 1010-1012: 394-398. doi: 10.4028/www.scientific.net/AMR.1010-1012.394 [16] 马浩淼, 吴 海, 王德发, 等. 面积归一法测定萜烯试剂纯度[J]. 计量学报, 2018, 39(5): 736-740. doi: 10.3969/j.issn.1000-1158.2018.05.27 [17] Milton M J T, Guenther F, Miller W R, et al. Validation of the Gravimetric Values and Uncertainties of Independently Prepared Primary Standard Gas Mixtures[J]. Metrologia, 2006, 43(3): L7-L10. doi: 10.1088/0026-1394/43/3/N01 [18] 王德发, 吴海, 胡树国. 气体标准物质研制过程中的核验及其不确定度贡献[J]. 计量技术, 2012(9): 21-24. doi: 10.3969/j.issn.1000-0771.2012.9.006 [19] Lee S, Kim M, Oh S, et al. Determination of Physical Adsorption Loss of Primary Standard Gas Mixtures in Cylinders Using Cylinder-to-cylinder Division[J]. Metrologia, 2017, 54(6): L26-L33. doi: 10.1088/1681-7575/aa87b8 [20] Rhoderick G C, Lin J. Stability Assessment of Gas Mixtures Containing Monoterpenes in Varying Cylinder Materials and Treatments[J]. Anal. Chem., 2013, 85(9): 4675-85. doi: 10.1021/ac400324v [21] 国家市场监督管理总局. 气体分析 纯度分析和纯度数据的处理: GB/T 38521-2020[S]. 北京, 2020. [22] 国家市场监督管理总局. 气体标准物质研制(生产)通用技术要求: JJF 1344-2012[S]. 北京, 2012. [23] 国家市场监督管理总局. 一级标准物质技术规范: JJF 1006-1994[S]. 北京, 1994. [24] 叶相平. 浅述高纯气体中微量水的分析[J]. 低温与特气, 2014, 32(3): 33-36. doi: 10.3969/j.issn.1007-7804.2014.03.010 [25] Brewer P J, Gieseking B, Ferracci V F, et al. International comparison CCQM-K116: 10 µmol mol−1 water vapour in nitrogen[J]. Metrologia, 2018, 55(1A). doi: 10.1088/0026-1394/55/1A/08018 [26] 胡树国, 金美兰, 盖良京. 利用脉冲放电氦电离色谱检测高纯气体中微量无机杂质[J]. 计量技术, 2007(6): 36-38. doi: 10.3969/j.issn.1000-0771.2007.06.011 [27] 李佳, 胡树国, 宋栋梁, 等. GC-FID法测定低含量氟利昂气体标准物质的研究[J]. 计量技术, 2013(9): 13-16. [28] Zhou Z, Han Q, Wang D, et al. International comparison CCQM-K101: oxygen in nitrogen - a track B comparison and that the matrix contains argo[J]. Metrologia, 2016, 53(1A): 08013. doi: 10.1088/0026-1394/53/1A/08013 [29] 王德发, 刘沂玲, 胡树国, 等. 烟道气国际比对中低浓度一氧化碳的精确测量[J]. 分析化学计量, 2011, 20(4): 33-35. [30] 李剑, 王德发, 夏春, 等. 傅里叶变换红外光谱法同步测量气体污染物的研究[J]. 计量技术, 2018(4): 6-9. [31] 程巳阳, 高闽光, 徐亮, 等. 多次反射池FTIR光谱法的臭氧浓度反演及其相关性分析[J]. 光谱学与光谱分析, 2011, 31(5): 1212-1215. doi: 10.3964/j.issn.1000-0593(2011)05-1212-04 [32] 王德发, 苏亚琴. 利用傅立叶变换红外光谱法检测一氧化氮纯气中的二氧化氮杂质[J]. 计量技术, 2009(11): 14-17. doi: 10.3969/j.issn.1000-0771.2009.11.004 [33] 王德发, 周泽义, 刘沂玲, 等. 利用傅立叶变换红外光谱法检测一氧化氮纯气中的氧化亚氮杂质[J]. 化学分析计量, 2008, 17(6): 18-21. doi: 10.3969/j.issn.1008-6145.2008.06.005 [34] Viallon J, Flores E, Idrees F, et al. CCQM-K137, nitrogen monoxide (NO) in nitrogen[J]. Metrologia, 2020, 57(1A): 08001. doi: 10.1088/0026-1394/57/1A/08001 [35] Flores E, Idrees F, Moussay P, et al. Final report on international comparison CCQM-K74: Nitrogen dioxide, 10 µmol/mol[J]. Metrologia, 2012, 49(1A): 08005. doi: 10.1088/0026-1394/49/1A/08005 [36] 刘沂玲, 王德发. 氨气体标准物质的研制[J]. 现代测量与实验室管理, 2010, 18(2): 3-6. doi: 10.3969/j.issn.1673-8764.2010.02.001 [37] Funke H H, Raynor M W, Belgin Y, et al. Impurities in hydride gases part 1: Investigation of trace moisture in the liquid and vapor phase of ultra-pure ammonia by FTIR spectroscopy[J]. Journal of Electronic Materials, 2001, 30(11): 1438-1447. doi: 10.1007/s11664-001-0199-4 [38] 尹强, 黄彦捷, 周阳, 等. 氦中三氟化氮气体标准物质的研制[J]. 化学试剂, 2019, 41(7): 704-709. [39] 谢腾升, 焦培培, 王娟, 等. FTIR法测定NF3中微量HF的分析方法探究[J]. 化学推进剂与高分子材料, 2020, 18(5): 67-71. [40] 张洪彬, 韦桂欢, 周升如. 色谱/质谱联用法测定NF3中微量CF4[J]. 质谱学报, 2001, 22(3): 51-55. doi: 10.3969/j.issn.1004-2997.2001.03.009 [41] 王德发, 吴海, 刘沂玲. NO2气体标准物质的研制[J]. 计量学报, 2010, 31(5A): 178-183. [42] 王德发, 刘沂玲, 吴海. CCQM-K74国际比对中二氧化氮浓度的测量[J]. 化学分析计量, 2013, 22(5): 77-80. [43] 李剑, 王德发, 夏春, 等. 用于低浓度NO2精确测量的傅里叶变换红外光谱系统研究[J]. 计量学报, 2019, 40(3): 517-521. doi: 10.3969/j.issn.1000-1158.2019.03.27 [44] Flores E, Viallon J, Moussay P, et al. Accurate Fourier Transform Infrared (FT-IR) Spectroscopy Measurements of Nitrogen Dioxide (NO2) and Nitric acid (HNO3) Calibrated with Synthetic Spectra[J]. Applied Spectroscopy, 2013, 67(10): 1171-1178. doi: 10.1366/13-07030 [45] 于庆伟, 李强, 李福芬, 等. 氮中微量氯化氢标准气体的研制[J]. 低温与特气, 2018, 36(2): 28-31. [46] 王德发, 盖良京, 吴海. 红外光谱法、气相色谱法和气相色谱/质谱法分析检测痕量SF4的比较[J]. 分析仪器, 2010(3): 38-41. [47] 国家市场监督管理总局. 通用计量术语及定义: JJF1001-2011[S]. 北京, 2011. [48] 国家市场监督管理总局. 标准物质通用术语和定义: JJF1005-2016[S]. 北京, 2016. [49] IX-ISO. Gas analysis - General quality aspects and metrological traceability of calibration gas mixtures: ISO 14167: 2017[S]. 2017. [50] Viallon J, Flores E, Idrees F, et al. CCQM-K90, formaldehyde in nitrogen, 2 μmol mol−1 Final report[J]. Metrologia, 2017, 54(1A): 08029. doi: 10.1088/0026-1394/54/1A/08029 [51] Flores E, Viallon J, Choteau T, et al. CCQM-K120 (Carbon dioxide at background and urban level)[J]. Metrologia, 2019, 56(1A): 08001. doi: 10.1088/0026-1394/56/1A/08001 [52] Flores E, Viallon J, Moussay P, et al. An FTIR method for accurate CO2 mole fraction measurements with correction for differences in isotopic composition of gases[J]. Metrologia, 2019, 56(4): 044005. doi: 10.1088/1681-7575/ab2941 [53] 夏玲君, 刘立新, 周凌晞, 等. 改进的大气CO2、CH4、N2O、CO在线观测FTIR系统[J]. 环境科学, 2013, 34(11): 4159-4164. [54] 徐亮. 大气痕量气体的主动FTIR光谱分析方法及应用研究[D]. 安徽: 中国科学院合肥物质科学研究院, 2007. [55] 李相贤, 高闽光, 徐亮, 等. 基于OP-FTIR法监测城市交通排放CO、CO2、N2O和CH4气体[J]. 红外技术, 2011, 33(8): 473-476. [56] Huang X, Schwenke D W, Tashkun S A, et al. An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial 12C16O2 infrared line list[J]. The Journal of Chemical Physics, 2012, 136(12): 124311-1-124311-17. doi: 10.1063/1.3697540 [57] Guo R, Teng J, Cao K, et al. Comb-assisted, Pound-Drever-Hall locked cavity ring-down spectrometer for high-performance retrieval of transition parameters[J]. Optics Express, 2019, 27(22): 31850-31863. doi: 10.1364/OE.27.031850 [58] ISO/TC. Gas analysis - Comparison methods for deternining and checking the composition of calibration gas mixtures: ISO 6143: 2001[S]. 2001. [59] 国家市场监督管理总局. 气体分析 校准混合气组成的测定和校验 比较法: GB/T 10628-2008[S]. 北京, 2008. [60] ISO/TC. Gas analysis - Comparison methods for the determination of the composition of gas mixtures based on one- and two-point calibration: ISO 12963: 2017[S]. 2017. [61] 国家市场监督管理总局. 气体分析 测量过程及结果校准技术要求: GB/T 38677-2020[S]. 北京, 2020.