[1] |
吴翰钟. 光学频率梳的绝对距离测量研究[D]. 天津: 天津大学, 2017.
|
[2] |
Foltynowicz A, Masłowski P, Ban T, et al. Optical frequency comb spectroscopy[J]. Faraday discussions, 2011(150): 23-31.
|
[3] |
Li R, Wu Y, Rui Y, et al. Absolute Frequency Measurement of 6Li D Lines with kHz-Level Uncertainty[J]. Physical review letters, 2020, 124(6): 063002. doi: 10.1103/PhysRevLett.124.063002
|
[4] |
Hu D, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2021(482): 126566.
|
[5] |
Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
|
[6] |
Fang S, Jiang Y, Cheng H, et al. Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb[J]. Chinese Physics B, 2015, 24(7): 242-245.
|
[7] |
Niering M, Holzwarth R, Reichert J, et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock[J]. Physical Review Letters, 2000, 84(24): 5496. doi: 10.1103/PhysRevLett.84.5496
|
[8] |
Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical review letters, 2007, 99(26): 263902. doi: 10.1103/PhysRevLett.99.263902
|
[9] |
姜海峰. 超稳光生微波源研究进展[J]. 物理学报, 2018, 67(16): 83-105.
|
[10] |
王强. 光钟——时间频率定义新趋势[J]. 计量技术, 2019(5): 11-13. doi: 10.3969/j.issn.1000-0771.2019.05.03
|
[11] |
Bothwell T, Kedar D, Oelker E, et al. JILA SrI optical lattice clock with uncertainty of 2×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
|
[12] |
Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 2×10−18 systematic uncertainty[J]. Physical review letters, 2016, 116(6): 063001. doi: 10.1103/PhysRevLett.116.063001
|
[13] |
Brewer S M, Chen J S, Hankin A M, et al. Al+ 27 quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical review letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
|
[14] |
韩海年, 魏志义. 低相噪光学频率梳[J]. 物理, 2016, 45(7): 449-457. doi: 10.7693/wl20160705
|
[15] |
Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
|
[16] |
崔佳华, 林百科, 孟飞, 等. 相位锁定至超窄线宽激光的高相干性双光梳研究[J]. 红外与毫米波学报, 2020, 39(1): 25-31. doi: 10.11972/j.issn.1001-9014.2020.01.005
|
[17] |
Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics express, 2015, 23(11): 14057-14069. doi: 10.1364/OE.23.014057
|
[18] |
Benko C, Ruehl A, Martin M J, et al. Full phase stabilization of a Yb: fiber femtosecond frequency comb via high-bandwidth transducers[J]. Optics letters, 2012, 37(12): 2196-2198. doi: 10.1364/OL.37.002196
|
[19] |
Iwakuni K, Inaba H, Nakajima Y, et al. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control[J]. Optics express, 2012, 20(13): 13769-13776. doi: 10.1364/OE.20.013769
|
[20] |
Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics letters, 2005, 30(21): 2948-2950. doi: 10.1364/OL.30.002948
|
[21] |
张颜艳. 掺铒光纤飞秒光梳及其在光频测量中的应用[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2018.
|
[22] |
McFerran J J, Swann W C, Washburn B R, et al. Elimination of pump-induced frequency jitter on fiber-laser frequency combs[J]. Optics letters, 2006, 31(13): 1997-1999. doi: 10.1364/OL.31.001997
|
[23] |
Vernaleken A, Schmidt B, Wolferstetter M, et al. Carrier-envelope frequency stabilization of a Ti: sapphire oscillator using different pump lasers[J]. Optics express, 2012, 20(16): 18387-18396. doi: 10.1364/OE.20.018387
|
[24] |
Kim Y, Kim S, Kim Y J, et al. Er-doped fiber frequency comb with mHz relative linewidth[J]. Optics express, 2009, 17(14): 11972-11977. doi: 10.1364/OE.17.011972
|
[25] |
Helbing F W, Steinmeyer G, Keller U, et al. Carrier-envelope offset dynamics of mode-locked lasers[J]. Optics letters, 2002, 27(3): 194-196. doi: 10.1364/OL.27.000194
|
[26] |
Hänsel W, Giunta M, Lezius M, et al. Electro-optic modulator for rapid control of the carrier-envelope offset frequency[C]. CLEO: Science and Innovations. Optical Society of America, 2017: SF1C. 5.
|
[27] |
Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402. doi: 10.1109/JQE.2005.857657
|
[28] |
Kuse N, Lee C C, Jiang J, et al. Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator[J]. Optics express, 2015, 23(19): 24342-24350. doi: 10.1364/OE.23.024342
|
[29] |
毕然, 陈力荣, 李晋鹏, 等. 任意偏振光保偏的声光衍射效率增强系统的研究[J/OL]. 激光与光电子学进展, 2021, 58(1): 0123002.
|
[30] |
Nakajima Y, Inaba H, Hosaka K, et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Optics Express, 2010, 18(2): 1667-1676. doi: 10.1364/OE.18.001667
|
[31] |
Ning K, Hou L, Fan S T, et al. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chinese Physics Letters, 2020, 37(6): 064202. doi: 10.1088/0256-307X/37/6/064202
|