留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电光马赫-曾德尔干涉仪的飞秒光梳载波包络相移快速调节技术

丁永今 曹士英 宋文霞 朱琳 孟飞 林百科 王强 林弋戈 方占军

丁永今,曹士英,宋文霞,等. 基于电光马赫-曾德尔干涉仪的飞秒光梳载波包络相移快速调节技术[J]. 计量科学与技术,2021, 65(6): 19-24 doi: 10.12338/j.issn.2096-9015.2020.9058
引用本文: 丁永今,曹士英,宋文霞,等. 基于电光马赫-曾德尔干涉仪的飞秒光梳载波包络相移快速调节技术[J]. 计量科学与技术,2021, 65(6): 19-24 doi: 10.12338/j.issn.2096-9015.2020.9058
DING Yongjin, CAO Shiying, SONG Wenxia, ZHU Lin, MENG Fei, LIN Baike, WANG Qiang, LIN Yige, FANG Zhanjun. Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators[J]. Metrology Science and Technology, 2021, 65(6): 19-24. doi: 10.12338/j.issn.2096-9015.2020.9058
Citation: DING Yongjin, CAO Shiying, SONG Wenxia, ZHU Lin, MENG Fei, LIN Baike, WANG Qiang, LIN Yige, FANG Zhanjun. Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators[J]. Metrology Science and Technology, 2021, 65(6): 19-24. doi: 10.12338/j.issn.2096-9015.2020.9058

基于电光马赫-曾德尔干涉仪的飞秒光梳载波包络相移快速调节技术

doi: 10.12338/j.issn.2096-9015.2020.9058
基金项目: 国家重点研发计划(2016YFF0200201,2017YFA0304404);国家自然科学基金(91736310)
详细信息
    作者简介:

    丁永今(1994-),中国计量科学研究院研究生,研究方向:飞秒光学频率梳,邮箱:wangqiang@nim.ac.cn

    通讯作者:

    王强(1979-),中国计量科学研究院副研究员,研究方向:锶原子光晶格钟及光学频率梳等,邮箱:wangqiang@nim.ac.cn

Fast Control of the Carrier-Envelope Offset Frequency in a Femtosecond Optical Frequency Comb by using the Mach-Zehnder Interferometer with Electro-Optic Modulators

  • 摘要: 介绍了一种基于电光晶体马赫-曾德尔干涉仪的载波包络相移快速调节方法,对此方法进行了理论分析和仿真计算,并搭建了一套基于电光晶体马赫-曾德尔干涉仪的载波包络相移调节的光梳实验系统。与超稳激光进行拍频以验证其调节效果,证明可实现8 MHz的载波包络相移调节范围,为窄光梳的实现提供了一种技术手段。
  • 图  1  基于电光晶体马赫-曾德尔干涉仪的$ {f}_{0} $快速调节方法

    Figure  1.  Fast control scheme for $ {f}_{0} $ by using the Mach-Zehnder interferometer with electro-optic modulators

    图  2  光在电光晶体马赫-曾德尔干涉仪中的偏振

    Figure  2.  Polarization of light in the Mach-Zehnder interferometer with electro-optic modulators

    图  3  入射光分别为线偏光、椭圆偏光和圆偏光的偏振仿真计算结果

    Figure  3.  Results of polarization simulation when the incident light is of linear polarization, elliptical polarization, and circular polarization

    图  4  EOM上加不同电压时的拍频信号

    Figure  4.  Beat signals when different voltages are applied to EOM

  • [1] 吴翰钟. 光学频率梳的绝对距离测量研究[D]. 天津: 天津大学, 2017.
    [2] Foltynowicz A, Masłowski P, Ban T, et al. Optical frequency comb spectroscopy[J]. Faraday discussions, 2011(150): 23-31.
    [3] Li R, Wu Y, Rui Y, et al. Absolute Frequency Measurement of 6Li D Lines with kHz-Level Uncertainty[J]. Physical review letters, 2020, 124(6): 063002. doi: 10.1103/PhysRevLett.124.063002
    [4] Hu D, Wu Z, Cao H, et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 2021(482): 126566.
    [5] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513. doi: 10.1038/35107000
    [6] Fang S, Jiang Y, Cheng H, et al. Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb[J]. Chinese Physics B, 2015, 24(7): 242-245.
    [7] Niering M, Holzwarth R, Reichert J, et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock[J]. Physical Review Letters, 2000, 84(24): 5496. doi: 10.1103/PhysRevLett.84.5496
    [8] Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical review letters, 2007, 99(26): 263902. doi: 10.1103/PhysRevLett.99.263902
    [9] 姜海峰. 超稳光生微波源研究进展[J]. 物理学报, 2018, 67(16): 83-105.
    [10] 王强. 光钟——时间频率定义新趋势[J]. 计量技术, 2019(5): 11-13. doi: 10.3969/j.issn.1000-0771.2019.05.03
    [11] Bothwell T, Kedar D, Oelker E, et al. JILA SrI optical lattice clock with uncertainty of 2×10−18[J]. Metrologia, 2019, 56(6): 065004. doi: 10.1088/1681-7575/ab4089
    [12] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 2×10−18 systematic uncertainty[J]. Physical review letters, 2016, 116(6): 063001. doi: 10.1103/PhysRevLett.116.063001
    [13] Brewer S M, Chen J S, Hankin A M, et al. Al+ 27 quantum-logic clock with a systematic uncertainty below 10−18[J]. Physical review letters, 2019, 123(3): 033201. doi: 10.1103/PhysRevLett.123.033201
    [14] 韩海年, 魏志义. 低相噪光学频率梳[J]. 物理, 2016, 45(7): 449-457. doi: 10.7693/wl20160705
    [15] Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature photonics, 2009, 3(6): 351-356. doi: 10.1038/nphoton.2009.94
    [16] 崔佳华, 林百科, 孟飞, 等. 相位锁定至超窄线宽激光的高相干性双光梳研究[J]. 红外与毫米波学报, 2020, 39(1): 25-31. doi: 10.11972/j.issn.1001-9014.2020.01.005
    [17] Shi H, Song Y, Liang F, et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics express, 2015, 23(11): 14057-14069. doi: 10.1364/OE.23.014057
    [18] Benko C, Ruehl A, Martin M J, et al. Full phase stabilization of a Yb: fiber femtosecond frequency comb via high-bandwidth transducers[J]. Optics letters, 2012, 37(12): 2196-2198. doi: 10.1364/OL.37.002196
    [19] Iwakuni K, Inaba H, Nakajima Y, et al. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control[J]. Optics express, 2012, 20(13): 13769-13776. doi: 10.1364/OE.20.013769
    [20] Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics letters, 2005, 30(21): 2948-2950. doi: 10.1364/OL.30.002948
    [21] 张颜艳. 掺铒光纤飞秒光梳及其在光频测量中的应用[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2018.
    [22] McFerran J J, Swann W C, Washburn B R, et al. Elimination of pump-induced frequency jitter on fiber-laser frequency combs[J]. Optics letters, 2006, 31(13): 1997-1999. doi: 10.1364/OL.31.001997
    [23] Vernaleken A, Schmidt B, Wolferstetter M, et al. Carrier-envelope frequency stabilization of a Ti: sapphire oscillator using different pump lasers[J]. Optics express, 2012, 20(16): 18387-18396. doi: 10.1364/OE.20.018387
    [24] Kim Y, Kim S, Kim Y J, et al. Er-doped fiber frequency comb with mHz relative linewidth[J]. Optics express, 2009, 17(14): 11972-11977. doi: 10.1364/OE.17.011972
    [25] Helbing F W, Steinmeyer G, Keller U, et al. Carrier-envelope offset dynamics of mode-locked lasers[J]. Optics letters, 2002, 27(3): 194-196. doi: 10.1364/OL.27.000194
    [26] Hänsel W, Giunta M, Lezius M, et al. Electro-optic modulator for rapid control of the carrier-envelope offset frequency[C]. CLEO: Science and Innovations. Optical Society of America, 2017: SF1C. 5.
    [27] Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402. doi: 10.1109/JQE.2005.857657
    [28] Kuse N, Lee C C, Jiang J, et al. Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator[J]. Optics express, 2015, 23(19): 24342-24350. doi: 10.1364/OE.23.024342
    [29] 毕然, 陈力荣, 李晋鹏, 等. 任意偏振光保偏的声光衍射效率增强系统的研究[J/OL]. 激光与光电子学进展, 2021, 58(1): 0123002.
    [30] Nakajima Y, Inaba H, Hosaka K, et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Optics Express, 2010, 18(2): 1667-1676. doi: 10.1364/OE.18.001667
    [31] Ning K, Hou L, Fan S T, et al. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chinese Physics Letters, 2020, 37(6): 064202. doi: 10.1088/0256-307X/37/6/064202
  • 加载中
图(4)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  41
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-07
  • 刊出日期:  2021-07-08

目录

    /

    返回文章
    返回