Calibration Device for CO2 Laser Power Based on Chopper Sampling and Attenuation Technique
-
摘要: CO2激光器输出功率的稳定性和调节能力较差,在激光功率校准中严重影响校准结果的重复性和校准功率范围。通过分光取样监测系统对CO2激光功率进行实时监测,可改善校准的重复性。但对于波长为10.6 μm的激光,常用的ZnSe镜片的监测比很不稳定,导致监测比的波动幅度过大。本文基于斩光原理,研制了斩光取样与衰减系统,衰减范围达到0.2%~50%。通过控制单元的优化设计,避免了同一束光路中两套斩光组件的相互干扰。对校准装置的监测比进行了测试,斩光取样系统的监测比不稳定度达到1.1%以内,显著优于CO2激光功率的不稳定度(约5%)和ZnSe镜片的监测比不稳定度(8.6%)。利用该装置进行了CO2激光功率校准测试,被测功率计修正因子的重复性(k=1)从无监测条件下的1.09%变为0.62%。本文提出的斩光取样与衰减系统,在CO2激光功率校准中提高了校准结果的重复性,增大了功率调节范围。Abstract: The calibration repeatability of CO2 laser and the power range that can be calibrated are reduced by the laser's poor power stability and adjustability. The repeatability can be improved by monitoring the CO2 laser power in real time with a beam splitting system. But for 10.6 μm laser, the reflectance of ZnSe beam splitters is very unstable, which leads to fluctuation of the monitor ratio. Based on the principle of chopper, a chopper sampling and attenuation system was developed. The attenuation range is 0.2%~50%. Through an optimization design of the control unit, the interference between two sets of choppers in the same beam was avoided. The monitor ratio of the calibration setup was tested, and the monitor ratio instability was less than 1.1%, which is significantly better than that of ZnSe beam splitters (8.6%). The repeatability (k = 1) of the correction factor of the measured laser power meter improved from 1.09% (without a monitor) to 0.62%. The chopper sampling and attenuation system proposed in this paper improves the repeatability of calibration results and increases the power adjustment capability in CO2 laser power calibrations.
-
Key words:
- CO2 laser /
- laser power calibration /
- chopper sampler /
- attenuator /
- monitor ratio
-
表 1 CO2激光功率计校准结果
Table 1. CO2 laser power calibration results
序号 标准监测值(W) 标准值(W) 被测监测值(W) 被测值(W) 修正因子(有监测) 修正因子(无监测) 1 2.691 30.3 2.653 29.6 1.0092 1.0236 2 2.676 31.0 2.694 31.1 1.0035 0.9968 3 2.647 31.0 2.650 30.6 1.0142 1.0131 4 2.710 31.8 2.709 31.4 1.0124 1.0127 5 2.558 29.5 2.596 29.6 1.0114 0.9966 6 2.629 30.1 2.629 29.8 1.0101 1.0101 7 2.713 31.2 2.740 31.6 0.9972 0.9873 8 2.738 31.5 2.735 31.6 0.9957 0.9968 9 2.654 30.9 2.636 30.5 1.0062 1.0131 10 2.662 31.2 2.678 31.1 1.0092 1.0032 重复性(k=1) 0.62% 1.09% -
[1] Kotyuk A F, Liberman A A, Ulanovskii M Y. Assurance of the uniformity of measurements of the power of laser radiation[J]. Measurement Techniques, 2005, 48(11): 1070-1074. doi: 10.1007/s11018-006-0022-y [2] Dowell M L, Cromer C L, Jones R D, et al. New developments in deep ultraviolet laser metrology for photolithography[C]. Seiler D. Characterization and Metrology for ULSI Technology. Americal: American Institute of Physics, 2001: 361-363. [3] Rysin V V, AB Kubarev, Kubyshkin V V. Precision calibrating equipment for laser power[J]. Measurement Techniques, 1983, 26(10): 819-822. [4] Kueck S, Liegmann K, Moestl K, et al. Laser radiometry for UV lasers at 193 nm[C]. Exarhos G. Laser-induced Damage in Optical Matls. Washington: SPIE, 2003: 645-655. [5] Li X Y, Scott T, Shao Y, et al. Nonlinearity measurements of high-power laser detectors at NIST[J]. Journal of Research of the National Institute of Standards & Technology, 2004, 109(4): 429-434. [6] Brandt F, S Kück, A Grütz. Traceable laser power measurements of diode laser radiation in the near infrared[J]. MAPAN-Journal of Metrology Society of India, 2010, 25(1): 29-35. [7] 李英娜, 于靖. 激光中功率基准装置的改造[J]. 现代测量与实验室管理, 2000, 8(2): 15-19. [8] 徐涛, 于靖, 邓玉强, 等. 准分子激光功率标准探测器的研制[J]. 应用光学, 2006, 33(4): 999-1002. [9] Grosjean D F, Olson R A, Sarka B, et al. High‐power CO2 laser‐beam monitor[J]. Review of Scientific Instruments, 1978, 49(6): 778-781. doi: 10.1063/1.1135613 [10] 高雪松, 高春清, 高明伟, 等. 高精度激光参数测量系统中衰减系统的研究与评价[J]. 强激光与粒子束, 2006, 18(2): 15-18. [11] Li X Y, Scott T, Cromer C, et al. Reflective optical chopper used in NIST high-power laser measurements[J]. Journal of Research of the National Institute of Standards & Technology, 2008, 113(6): 305-309. [12] Lander M L, Bagford J O, Seibert D B, et al. High power calibration of commercial power meters using an NIST‐traceable secondary standard[J]. Journal of Laser Applications, 1996, 8(2): 103-107. doi: 10.2351/1.4745410 [13] 钱铮. 参考输出占空比可调的双光路斩光器[J]. 苏州大学学报(工科版), 1998, 18(3): 48-52. [14] 林鑫, 杨勇, 程学武, 等. 机械斩波在大气探测激光雷达中的应用[J]. 中国激光, 2013, 40(8): 217-222. [15] 杨俊梅, 曹泽新, 栾玉国, 等. LD泵浦机械斩波调Q激光器的设计[J]. 沈阳师范大学学报(自然科学版), 2016, 34(4): 449-453.