Design and Damage-Resistant Performance Study of 10 kW Electrical Substitute Laser Power Meter Absorber
-
摘要: 激光功率的绝对测量主要采用电校准激光功率测量系统,将激光功率溯源至电压和标准电阻基准,实现量值复现。对于万瓦级高功率激光的绝对测量,吸收体的抗损伤性能是测量系统的关键。针对10 kW电校准激光功率计吸收体的设计与抗损伤性能展开研究,基于反射锥体扩束结构和水冷散热方式,实现了抗损伤激光吸收腔体的设计与研制。采用数值传热分析手段,对不同激光功率、光斑尺寸和冷却水流量下吸收体的传热特征进行了研究。结果显示,吸收体内壁激光吸收面的温升得到较好控制,吸收体的功率测量上限达到15 kW,主要受限于水冷通道表面温升引起的冷却水汽化。数值分析结果对于抗损伤性能的明确、测量系统参数的设定和吸收体结构的优化具有重要的参考价值。在高功率激光下对由该吸收体组成的电校准测量系统开展了实验测试,最高测量功率达到14.3 kW,不同功率下的测量数据保持稳定,吸收体未发生损伤。Abstract: The absolute measurement of laser power mainly adopts an electrical calibration laser power measurement system, which traces the laser power to the voltage and standard resistance reference to achieve the value realization. For absolute measurement of high power lasers of 10,000 watts level, the damage resistance of the absorber is the key to the measurement system. In this paper, the design and damage-resistant performance of an absorber of 10 kW electrical substitute laser power meter were studied, and the damage-resistant laser absorber cavity was designed and developed based on the reflective beam expander structure and water cooling method. The heat transfer characteristics of the absorber under different laser power, spot size, and cooling water flow rates were studied using numerical heat transfer analysis. The results show that the temperature rise of the laser absorption surface is well controlled, and the upper limit of the power measurement of the absorber reaches 15 kW, which is mainly limited by the vaporization of cooling water caused by the surface temperature rise of the water cooling channel. The results of the numerical analysis are essential for the clarification of the damage resistance, the setting of the measurement system parameters, and the optimization of the absorber structure. Under the condition of a high-power laser, the electrical calibration measurement system with the absorber was tested. The maximum measurement power reached 14.3 kW, and the measurement data remained stable at different powers without damage to the absorber.
-
表 1 不同功率下最大温升模拟结果(流量25 L/min,光斑Φ20 mm)
Table 1. Simulation results of maximum temperature rise under different power (flow rate 25 L/min, spot size Φ 20 mm)
功率(kW) 激光吸收面(℃) 水冷通道表面(℃) 10 134 43 15 201 64 20 234 76 表 2 不同光斑尺寸下最大温升模拟结果(功率10 kW,流量20 L/min)
Table 2. Simulation results of maximum temperature rise under different spot sizes (power 10 kW, flow rate 20 L / min)
光斑 激光吸收面(℃) 水冷通道表面(℃) Φ 10 mm 166 48 Φ 20 mm 138 48 Φ 30 mm 118 47 Φ 40 mm 106 45 Φ 50 mm 96 47 Φ 60 mm 88 48 表 3 不同流量下最大温升及平均对流换热系数模拟结果(功率10 kW,光斑Φ 20 mm)
Table 3. Simulation results of maximum temperature rise and average convective heat transfer coefficient under different flow rates (power 10 kW, spot Φ 20 mm)
流量(L/min) 激光吸收面最
大温升(℃)水冷通道表面
最大温升(℃)平均对流换热系
数(kW·m−2·K−1)10 154 65 2.6 15 144 54 3.7 20 138 48 4.7 25 134 43 5.6 30 131 39 6.6 表 4 高功率激光实验测试结果
Table 4. Experimental results of high power laser
激光器示值(kW) 测量值(kW) 比值 4.75 4.629 0.975 7.88 7.632 0.969 9.85 9.572 0.972 14.7 14.31 0.973 -
[1] Stephens M, Yung C S, Tomlin N A, et al. Room temperature laser power standard using a microfabricated electrical substitution bolometer[J]. Rev. Sci. Instrum., 2021, 92(2): 025107, 1-13. [2] Kuck S, Brandt F, Kremling H A, et al. Absolute measurement of F2-laser power at 157 nm[J]. Applied Optics, 2006, 45(14): 3325-30. doi: 10.1364/AO.45.003325 [3] 徐涛, 于靖, 邓玉强, 等. 准分子激光功率标准探测器的研制[J]. 应用光学, 2006, 33(4): 999-1002. [4] Endo M, Inoue T. A double calorimeter for 10-W level Laser power measurements[J]. IEEE Transactions on Instrumentation & Measurement, 2005, 54(2): 688-691. [5] Lehman J H, Vayshenker I, Livigni D J, et al. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations[J]. Journal of Research of the National Institute of Standards & Technology, 2004, 109(2): 291-298. [6] Kueck S, Liegmann K, Moestl K, et al. Laser radiometry for UV lasers at 193 nm[C]. Exarhos G. Proc. SPIE 4932. Boulder: SPIE, 2003: 645-655. [7] Dowell M L, Cromer C L, Jones R D, et al. New developments in deep ultraviolet laser metrology for photolithography[C]. David G S. AIP Conference Proceedings 550. Gaithersburg: American Institute of Physics, 2001: 361-363. [8] 李英娜, 于靖. 激光中功率基准装置的改造[J]. 现代测量与实验室管理, 2000, 8(2): 15-19. [9] 于靖. 瓦级激光功率基准器的研究[J]. 现代计量测试, 1998(1): 38-42. [10] Zhang Z M, Livigni D J, Jones R D, et al. Thermal modeling and analysis of laser calorimeters[J]. Journal of Thermophysics & Heat Transfer, 1996, 10(2): 350-356. [11] 于靖, 李英娜. 电校准激光中功率计的设计和量值稳定性考察[J]. 现代计量测试, 1996(5): 36-39. [12] Da N G S, Miron N. Theoretical model for the heat diffusion in an electrically calibrated laser power meter[J]. SPIE, 1995, 2550: 56-64. [13] Suzuki Y, Murata A, Arangi M, et al. Calorimeter with compensative absorber for measuring microwatt level optical power[J]. IEEE, 1991, 40(2): 219-221. [14] Williams P, Hadler J, Cromer C, et al. Flowing water optical power meter for primary-standard multi-kilowatt laser power measurements[J]. Metrologia, 2018, 55(3): 427-436. doi: 10.1088/1681-7575/aaae78 [15] Soni R K, Mandloie V K, Pote M B, et al. Spinning cone water film power meter for high-power CO2 lasers[J]. Optics and Laser Technology, 2007, 39(1): 196-201. doi: 10.1016/j.optlastec.2005.03.003 [16] Brandl V, Haensel k, Klos M, et al. Calibration of laser power meters for high-power applications[C]. Exarhos G. Proc. SPIE 4932. Boulder: SPIE, 2003: 600-607. [17] Plass W, Voss A, Schmid N, et al. Calibrated CO2 – Laser Power Calorimeter[C]. Michel Morin, Adolf Giesen. Proc. SPIE 2870. Quebec: SPIE, 1996: 298-303.