Analysis of a Structure Design of Skin Friction Sensors Based on FEM
-
摘要: 摩擦阻力是物体在流体中运动时受到总阻力的重要组成部分。由于理论分析的复杂性和实际流场的多样性,摩擦阻力的直接测量技术在理论验证和工业设计等领域起到关键作用。介绍一种面向应变式摩阻传感器弹性体的设计,通过分析平行梁结构摩阻传感器的工作原理,确定传感器孔径、平行梁间距、连接梁厚度是影响性能的主要参数;基于正交实验设计法选取三类参数的代表性组合,采用有限元仿真对贴片区的应变分布情况进行数值计算;通过定义应变区系数和应变-变形比等参数以协调互相矛盾的优化目标,分析各因素对传感器性能的影响,最终确认最优参数组合。Abstract: Skin friction is a major part of the total resistance an object encounters when moving in a fluid. Due to the difficulty in theoretical analysis and the diversity of flow fields, direct measurement of skin friction is needed in various applications. This paper introduces a design of elastic body for strain-type skin friction sensors. A mechanical analysis of the sensor was carried out. The analysis showed that the radius of the sensor’s hole, the spacing between the parallel beams, and the thickness of the connecting beam are the main parameters affect ing the performance. Then representative combinations of the parameters were selected using the orthogonal experimental method. The strain distribution in the patch area was calculated by using FEM. New parameters were defined to coordinate conflicting optimization goals. The influence of each parameter was analyzed to determine an optimal combination.
-
表 1 各因素采用的水平值/mm
Table 1. List of factors and their levels
水平 因素 Ch lmin hBC 1 0.0 5.0 2.5 2 0.5 6.0 5.0 3 1.0 7.0 7.5 表 2 三因素三水平正交实验组合
Table 2. Combination of 3-factor & 3-level orthogonal experiments
实验序号 水平 Ch lmin hBC 1 1 1 1 2 1 2 2 3 1 3 3 4 2 1 2 5 2 2 3 6 2 3 1 7 3 1 3 8 3 2 1 9 3 3 2 表 3 Rε-τ、wPB、SP、wmax、RS-w的仿真结果
Table 3. Simulation results forRε-τ, wPB, SP, wmax and RS-w
实验序号 Rε-τ/×10−8N−1 wPB/mm SP/×10−7mm·N−1 wmax/×10−4mm RS-w/×10−4 1 4.61 5.00 2.30 2.54 9.05 2 6.96 5.00 3.48 4.66 7.48 3 11.96 5.00 5.98 10.32 5.79 4 6.94 4.63 3.21 3.21 10.00 5 12.01 4.17 5.00 6.34 7.89 6 26.31 3.39 8.91 15.90 5.60 7 12.11 3.30 4.00 4.84 8.26 8 26.81 2.55 6.82 11.40 5.98 9 104.94 1.78 18.71 55.84 3.35 表 4 Rε-τ的三次目标和与极差/×10−7 N−1
Table 4. Sum of results for Rε-τ at each level and the ranges
水平 Rε-τ的三次目标和 Ch lmin hBC 1 2.35 2.37 5.77 2 4.53 4.58 11.88 3 14.39 14.32 3.61 极差 12.03 11.96 8.28 表 5 wPB的三次目标和与极差/×10−7mm
Table 5. Sum of results for wPB at each level and the ranges
水平 wPB的三次目标和 Ch lmin hBC 1 15.00 12.93 10.93 2 12.18 11.71 11.42 3 7.63 10.17 12.47 极差 7.37 2.76 1.54 表 6 SP的三次目标和与极差/×10−6 mm
Table 6. Sum of results for SP at each level and the ranges
水平 SP的三次目标和 Ch lmin hBC 1 1.18 0.95 1.80 2 1.71 1.53 2.54 3 2.95 3.36 1.50 极差 1.78 2.41 1.04 表 7 RS-w的三次目标和与极差/×10−3 mm
Table 7. Sum of results for RS-w at each l evel and the ranges
水平 RS-w的三次目标和 Ch lmin hBC 1 2.23 2.73 2.06 2 2.35 2.14 2.08 3 1.76 1.47 2.19 极差 0.59 1.26 0.13 -
[1] Preston J H. The Determination of Turbulent Skin Friction by Means of Pitot Tubes[J]. Journal of the Royal Aeronautical Society, 1954, 58(518): 109-121. doi: 10.1017/S0368393100097704 [2] MacLean M, J A Schetz. Numerical Study of Detailed Flow Affecting a Direct Measuring Skin-Friction Gauge[J]. AIAA Journal, 2003, 41(7): 1271-1281. doi: 10.2514/2.2095 [3] Blasius H. Grenzschichten in flüssigkeitenmitkleinerreibung[J]. Zeitschrift fur Angewandte Mathematic und Physik, 1908, 56(1): 1-37. [4] 王雄, 许晓斌, 王南天, 等. 微量摩阻天平旋转加载校准装置研制[J]. 中国测试, 2019, 45(1): 83-87. doi: 10.11857/j.issn.1674-5124.2018100104 [5] 马洪强, 高贺, 毕志献. 超高声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4): 83-88. doi: 10.3969/j.issn.1672-9897.2011.04.016 [6] Naughton J W, DeMillard E, Davidson P. Skin Friction Measurements to Support Viscous Drag Reduction[C]. 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2016. [7] Miozzi M, Felice F D, Klein C, et al. Taylor hypothesis applied to direct measurement of skin friction using data from Temperature Sensitive Paint[J]. Experimental Thermal and Fluid Science, 2019, 110(2020): 109913. [8] Smith T B. Development and Ground Testing of Direct Measuring Skin Friction Gages for High Enthalpy Supersonic Flight Tests[D]. Virginia Polytechnic Institute and State University, 2001. [9] Silvester T B, Morgan R G. Skin-Friction Measurements and Flow Establishment Within a Long Duct at Superorbital Speeds[J]. AIAA Journal, 2015, 46(2): 527-536. [10] 吕治国, 李国君, 赵荣娟, 等. 激波风洞高超声速摩阻直接测量技术研究[J]. 实验流体力学, 2013, 27(6): 81-85. doi: 10.3969/j.issn.1672-9897.2013.06.015 [11] Tiwana M I, Remond S J, Lovell N H. A Review of Tactile Sensing Technologies with Applications in Biomedical Engineering[J]. Sensor and Actuators A: Physical, 2012, 179: 17-31. doi: 10.1016/j.sna.2012.02.051 [12] Meritt R J, Schetz J A. Skin Friction Sensor Development, Validation, and Application for High-Speed, High-Enthalpy Flow Conditions[J]. Journal of Propulsion and Power, 2016, 32(4): 1-13. [13] 赵荣娟, 吕治国, 黄军, 等. 基于压电敏感元件的摩阻天平设计[J]. 空气动力学学报, 2018(4): 555-560. doi: 10.7638/kqdlxxb-2016.0112 [14] Perez E A A L, Pauliac-Vaujour E, Mouis M. Static finite element modeling for sensor design and processing of an individually contacted laterally-bent piezoelectric nanowire[J]. IEEE Transactions on Nanotechnology, 2016, 15(3): 521-526. doi: 10.1109/TNANO.2016.2549064 [15] Karna S K, Sahai R. An Overview on Taguchi Method[J]. International Journal of Engineering and Mathematical Sciences, 2012(1): 11-18. [16] 方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001: 35-43.